Answer:
a. 3 and 56, respectively.
Step-by-step explanation:
The computation of the degrees of freedom for the numerator and denominator for the critical value of F is given below:
k = 4
n = 15
Total degree of freedom is
= nk - 1
= 59
For numerator, it is
= k -1
= 4 - 1
= 3
and for denominator it is
= T - (k -1 )
= 59 - 3
= 56
10 - x = d (d= difference of 10 and x)
I think this right, sorry if it's wrong :/
Answer:
'I'm Sorry theres no question' i hope the math gose from a 0 to a 100 :>
Step-by-step explanation:
✔✔
Length of OP= sqrt 10
Length of PQ= sqrt(t^2+2t+2)
Length of OQ= sqrt(t^2+16)
Using Pythagoras thorem,
10+ t^2+2p+2=t^2+16
t=2
If you're using the app, try seeing this answer through your broswer: brainly.com/question/2822785________________
Evaluate the indefinite integral:
![\mathsf{\displaystyle\int\!(1+tan^2\,x)\,dx}\\\\\\ \mathsf{=\displaystyle\int\!\bigg[1+\left(\frac{sin\,x}{cos\,x}\right)^{\!2}\bigg]dx}\\\\\\ \mathsf{=\displaystyle\int\!\bigg[1+\frac{sin^2\,x}{cos^2\,x}\bigg]dx}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cdisplaystyle%5Cint%5C%21%281%2Btan%5E2%5C%2Cx%29%5C%2Cdx%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7B%3D%5Cdisplaystyle%5Cint%5C%21%5Cbigg%5B1%2B%5Cleft%28%5Cfrac%7Bsin%5C%2Cx%7D%7Bcos%5C%2Cx%7D%5Cright%29%5E%7B%5C%212%7D%5Cbigg%5Ddx%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B%3D%5Cdisplaystyle%5Cint%5C%21%5Cbigg%5B1%2B%5Cfrac%7Bsin%5E2%5C%2Cx%7D%7Bcos%5E2%5C%2Cx%7D%5Cbigg%5Ddx%7D)
Reduce both terms to the same common denominator:
![\mathsf{=\displaystyle\int\!\bigg[\frac{cos^2\,x}{cos^2\,x}+\frac{sin^2\,x}{cos^2\,x}\bigg]dx}\\\\\\ \mathsf{=\displaystyle\int\!\frac{cos^2\,x+sin^2\,x}{cos^2\,x}\,dx\qquad\quad (but~~cos^2\,x+sin^2\,x=1)}\\\\\\ \mathsf{=\displaystyle\int\! \frac{1}{cos^2\,x}\,dx}\\\\\\ \mathsf{=\displaystyle\int\! sec^2\,x\,dx}](https://tex.z-dn.net/?f=%5Cmathsf%7B%3D%5Cdisplaystyle%5Cint%5C%21%5Cbigg%5B%5Cfrac%7Bcos%5E2%5C%2Cx%7D%7Bcos%5E2%5C%2Cx%7D%2B%5Cfrac%7Bsin%5E2%5C%2Cx%7D%7Bcos%5E2%5C%2Cx%7D%5Cbigg%5Ddx%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B%3D%5Cdisplaystyle%5Cint%5C%21%5Cfrac%7Bcos%5E2%5C%2Cx%2Bsin%5E2%5C%2Cx%7D%7Bcos%5E2%5C%2Cx%7D%5C%2Cdx%5Cqquad%5Cquad%20%28but~~cos%5E2%5C%2Cx%2Bsin%5E2%5C%2Cx%3D1%29%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B%3D%5Cdisplaystyle%5Cint%5C%21%20%5Cfrac%7B1%7D%7Bcos%5E2%5C%2Cx%7D%5C%2Cdx%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B%3D%5Cdisplaystyle%5Cint%5C%21%20sec%5E2%5C%2Cx%5C%2Cdx%7D)
and that last one is an immediate integral:

Therefore,

✔
I hope this helps. =)
Tags: <em>indefinite integral anti-derivative trigonometric trig function tangent secant sine cosine tan sec sin cos differential integral calculus</em>