Answer:
C4H6
Explanation:
See attached table
Convert each of the masses into moles by dividing the mass by the molar mass of that element. That yields 3.83 moles of C and 6 moles of O. I rounded up the C to 4 moles to result in an empirical formula of C4H6
Pure substances can or can not be chemically combined.
Pure substances can be either elements or compounds, but not mixture. Mixture are different substances mixing together without being chemically combined, such as air, which is a mixture of oxygen, carbon dioxide, water etc. Mixture can be separated by physical methods, like filtration or decantation.
Meanwhile, elements are the substances that cannot be further separated by any means. No matter physical or chemical methods. Examples of elements are oxygen, hydrogen, neon and all the other ones from the periodic table. Compounds are basically elements joining together, but they’re chemically combined which means their electrons (kind of subatomic particle) are either shared or given away. These elements can only be separated by chemical methods like electrolysis or heating.
Therefore, as long as the substance cannot be separated by physical methods, it can be considered as a pure substance. We can now conclude that pure substance can be (element) or can not be (compound) chemically combined.
Answer:
Keq = [CO₂]/[O₂]
Explanation:
Step 1: Write the balanced equation for the reaction at equilibrium
C(s) + O₂(g) ⇄ CO₂(g)
Step 2: Write the expression for the equilibrium constant (Keq)
The equilibrium constant is equal to the product of the concentrations of the products raised to their stoichiometric coefficients divided by the product of the concentrations of the reactants raised to their stoichiometric coefficients. It only includes gases and aqueous species. The equilibrium constant for the given system is:
Keq = [CO₂]/[O₂]