Answer:
Double replacement reaction
Explanation:
Now, let us first write the reaction equation properly:
H₂SO₄ + 2KOH ⇒ K₂SO₄ + 2H₂O
The above reaction is a neutralization reaction between an acid and a base whose product gives salt and water only at most instances.
From here, we can observe that the species displaces on another in their ionic state. Hydrogen replaces potassium and water is produced. Potassium combines chemically with sulfate ions to give the salt of potassium.
Explanation:
The valence electrons within an atom is the number of electrons in its outermost shell.
These electrons are used by an atom to react with one another. They determine the extent to which an atom is ready to combine either by losing, gaining or sharing these electrons.
- Every atom desires to have a completely filled outermost shell.
- Only the elements in group 8 have a complete octet.
- The need to attain stability is driven by the number of electrons in their valence shell.
- Therefore, some atoms are very reactive.
- Those needing one electrons to complete their octet and also those that must lose one electron are very reactive.
Explanation:
BIOMEDICAL IMPORTANCE
In addition to serving as precursors of nucleic acids, purine and pyrimidine nucleotides participate in metabolic functions as diverse as energy metabolism, protein synthesis, regulation of enzyme activity, and signal transduction.
8 moles of H 2O are produced.
First, we need to figure out the chemical equation for producing water with oxygen which is H 2 + O2 = H 2O. Then, we need to balance the equation, resulting in 2H 2 + O2 = 2H 2O.
<h3>How many moles of H2 are required to make one mole of NH3?</h3>
Calculate 0.88074 mol H2's mass. If N2 is too much, 1.776 g H2 is needed to create 10.00 g of NH3. To create 8.2 moles of ammonia, 2 moles of NH3 are created when 1 mole of N2 and 3 moles of H2 mix. 4.1 moles of N2 Fast are consequently needed to make 8.2 moles of NH3.
<h3>
How many moles of h2 are needed to produce a solution?</h3>
An O-H bond has a bond energy of 1 09 Kcal. 3.6. A 38.0mL 0.026M HCl solution and a 0.032M NaOH solution react. Thus, 10 moles of NH 3 are obtained by dividing 15 moles of H2 by the 1.5 moles of H2 required for the product. and 9.3 x 10-3 moles of bromobutane (1.27/137 =.00927moles).
Learn more about H2O:
brainly.com/question/2193704
#SPJ4