Answer:
Step-by-step explanation:
2) let the two numbers be x and y
x-y =15
(taking x to be big)
x = 3 (y)+1
i.e. x-3y =1
Subtracting we get
2y =14 or y =7
x =15+7 =22
Larger number is 22 and smaller number is 7
-----------------------------------
Alysha is 2 years younger than Bryce/
Let Alysha be x years old then Bryce would be x+2
Sum of their ages
=x+x+2 =28
2x+2 =28
2x=26
x=13
Hence Alysha is 13 years old and Bryce 14 years old.
Answer:
the area is 15
Step-by-step explanation:
if you split this shape into a triangle and a square, the triangle would measure with a legnth og 4 and a with of 3, which = 12 and then you divide by 2 to = the triangles area(6) then you add tht to the area of the square 3*3=9. so the answer would be 15
I believe the answer should be graph J
It was marked down 1/4 of the original price to $128. That means $128 is equal to 3/4 of the original price. So the original price would be 4/3 of $128. I get $170.67 (rounded to the nearest cent).
Answer:
a

b

Step-by-step explanation:
From the question we are told that
The number of students in the class is N = 20 (This is the population )
The number of student that will cheat is k = 3
The number of students that he is focused on is n = 4
Generally the probability distribution that defines this question is the Hyper geometrically distributed because four students are focused on without replacing them in the class (i.e in the generally population) and population contains exactly three student that will cheat.
Generally probability mass function is mathematically represented as

Here C stands for combination , hence we will be making use of the combination functionality in our calculators
Generally the that he finds at least one of the students cheating when he focus his attention on four randomly chosen students during the exam is mathematically represented as

Here




Hence


Generally the that he finds at least one of the students cheating when he focus his attention on six randomly chosen students during the exam is mathematically represented as

![P(X \ge 1) =1- [ \frac{^{k}C_x * ^{N-k}C_{n-x}}{^{N}C_n}]](https://tex.z-dn.net/?f=P%28X%20%20%5Cge%201%29%20%3D1-%20%5B%20%20%5Cfrac%7B%5E%7Bk%7DC_x%20%2A%20%5E%7BN-k%7DC_%7Bn-x%7D%7D%7B%5E%7BN%7DC_n%7D%5D%20)
Here n = 6
So
![P(X \ge 1) =1- [ \frac{^{3}C_0 * ^{20 -3}C_{6-0}}{^{20}C_6}]](https://tex.z-dn.net/?f=P%28X%20%20%5Cge%201%29%20%3D1-%20%5B%20%20%5Cfrac%7B%5E%7B3%7DC_0%20%2A%20%5E%7B20%20-3%7DC_%7B6-0%7D%7D%7B%5E%7B20%7DC_6%7D%5D%20)
![P(X \ge 1) =1- [ \frac{^{3}C_0 * ^{17}C_{6}}{^{20}C_6}]](https://tex.z-dn.net/?f=P%28X%20%20%5Cge%201%29%20%3D1-%20%5B%20%20%5Cfrac%7B%5E%7B3%7DC_0%20%2A%20%5E%7B17%7DC_%7B6%7D%7D%7B%5E%7B20%7DC_6%7D%5D%20)
![P(X \ge 1) =1- [ \frac{1 * 12376}{38760}]](https://tex.z-dn.net/?f=P%28X%20%20%5Cge%201%29%20%3D1-%20%5B%20%20%5Cfrac%7B1%20%20%2A%20%2012376%7D%7B38760%7D%5D%20)

