Answer:
i hope its right
Step-by-step explanation:
give me brainliest answer.
the question in English
Draw a rectangle having the base congruent to the nine sevenths of the height.
Let
b-------> the base of rectangle
h-------> the height of rectangle
we know that
b=(9/7)*h-------> this is the equation to obtain the base of the rectangle for a given height
examples
1) for h=7 units
b=(9/7)*7-------->b=9 units
the dimensions are 9 units x 7 units------> see the attached figure
2) for h=5 units
b=(9/7)*5-------->b=(45/7) units
the dimensions are (45/7) units x 5 units
The answer in Italian
Facciamo
b-------> base del rettangolo
h-------> altezza del rettangolo
Noi sappiamo che
b=(9/7)*h-------> questa è l'equazione per ottenere la base del rettangolo per una determinata altezza
esempi
1) per h=7 units
b=(9/7)*7-------->b=9 units
le dimensioni sono 9 units x 7 units----->
vedere la figura allegata
2) per h=5 units
b=(9/7)*5-------->b=(45/7) units
le dimensioni sono (45/7) units x 5 units
Answer:
a) 81.5%
b) 95%
c) 75%
Step-by-step explanation:
We are given the following information in the question:
Mean, μ = 266 days
Standard Deviation, σ = 15 days
We are given that the distribution of length of human pregnancies is a bell shaped distribution that is a normal distribution.
Formula:

a) P(between 236 and 281 days)

b) a) P(last between 236 and 296)

c) If the data is not normally distributed.
Then, according to Chebyshev's theorem, at least
data lies within k standard deviation of mean.
For k = 2

Atleast 75% of data lies within two standard deviation for a non normal data.
Thus, atleast 75% of pregnancies last between 236 and 296 days approximately.
What you’re doing is breaking it down into its parts and writing it into an equation that way long hand.
3 + .4 + .00 + .005
Answer:
Explanation:
The expression that must be rewritten as a fully simplified fraction is:
You must, first, convert
as a fraction.
The line over the decimal 4 means that the digit 4 repeats indefinetly.
To find the fraction that represents this number you follow this procedure:

Now, you can mutiply both fractions:
