1. The hypothesis for this is experiment is that the 50:50 of methanol-water mixture will not turn to solid when the temperature reaches to -40°C.
2. The procedure for this is measuring equal volumes of water and methanol using the graduated cylinder. You can measure 100 mL of water and 100 mL of methanol using the graduated cylinder. Then, mix them in the beaker. Next, measure 200 mL of water, and another 200 mL of methanol. Don't mix them. Also, make a 60:40 mixture by measuring 120 mL of water and 80 mL of methanol, then mix them together. Place them all in the refrigerator at the same time. Record the time when they would freeze to solid.
3. The controls for this experiment are the 200 mL water alone, and the 200 mL methanol alone.
4. The independent variable in here is the time, while the dependent variable is the temperature of the mixtures.
5. If the hypothesis turns out to be true, then all the mixtures prepared should freeze and become solid after a certain period of time, with the exception of the 50:50 mixture. The 50:50 mixture should still remain as a liquid even when left overnight.
Answer:
flavio because you need a source of energy in order for it to have energy
Explanation:
can i have brainliest so i can rank up
Answer:
In hyphen notation, the mass number is written after the name of the element. For example, in isotopic notation, the isotope of carbon that has a mass number of twelve would be represented as 12C . In hyphen notation, it would be written as carbon-12.
Explanation:
lol just took the question and looked it up online this was the first thing that i saw if its not correct im sorry
Answer:
Here's what I get.
Explanation:
At the end of the reaction you will have a solution of the alcohol in THF.
The microdistillation procedure will vary, depending on the specific apparatus you are using, but here is a typical procedure.
- Transfer the solution to a conical vial.
- Add a boiling stone.
- Attach a Hickman head (shown below) and condenser.
- Place the assembly in in the appropriate hole of an aluminium block on top of a hotplate stirrer.
- Begin stirring and heating at a low level so the THF (bp 63 °C) can distill slowly.
- Use a Pasteur pipet to withdraw the THF as needed.
- When all the THF has been removed, raise the temperature of the Al block and distill the alcohol (bp 143 °C).