Answer:
Weathering, Erosion
Explanation:
Plants and animals can be agents of mechanical weathering. The seed of a tree may sprout in soil that has collected in a cracked rock. As the roots grow, they widen the cracks, eventually breaking the rock into pieces. Over time, trees can break apart even large rocks.
Tree root systems have a handful of large roots that branch out into a network of smaller roots that often extend out far beyond their branches do. These root systems prevent erosion by holding the soil in place and improving drainage which helps water get absorbed into the soil instead of just running over the top.
Hope this helps
All the love, Ya boi Fraser :)
10. You demonstrated the difference in density of the two objects. It is a physical property.
11. First calculate the density for all of them: density = mass/volume
Density:
A. 5/6 g/ml
B. 10/9 g/ml
C. 15/16 g/ml
D. 20/10 g/ml
If the density of the substance is higher than the density of the substance it is put in, then it will sink. So substances B and D will sink in water, as their densities are higher than 1 g/ml.
12. Ammonia weighs less than water does-- for example, the weight of 8 gallons of ammonia will be equivalent to the weight of 5 gallons of water.
Hope this helped!
Solvation describes the interaction of solvent with dissolved molecules.
Answer:
<u><em></em></u>
- <u><em>C) How much energy was added to the substance to increase molecule motion? </em></u>
Explanation:
<em>The most relevant question to ask regarding this change</em> must take into account the physical knowledge about matter.
When matter changes from<em> liquid </em>state to <em>gaseous</em> state, a physical change called evaporation, the particles (molecules or atoms) of the <em>pure substance </em>will separate from each other, take up more space and move faster.
<em>Condensation</em> is the opposite to evaporation, thus the option A) is not the most relevant question.
<em>The charge of the particles</em> does not change; so the option B) is not relevant at all.
The particles should gain energy from the surroundings to <em>increase</em> their <em>motion</em> (kinetic energy) when they pass from liquid state, where they move slower, to gas state, where they move faster. Hence, the option<em> C), How much energy was added to the substance to increase molecule motion?</em> , is totally relevant.
Since this is an increase in the <em>kinetic energy of the molecules</em>, the option D) is not relevant.