Answer:
The final acceleration becomes (1/3) of the initial acceleration.
Explanation:
The second law of motion gives the relationship between the net force, mass and the acceleration of an object. It is given by :

m = mass
a = acceleration
According to given condition, if the mass of a sliding block is tripled while a constant net force is applied. We need to find how much does the acceleration decrease.

Let a' is the final acceleration,

m' = 3m



So, the final acceleration becomes (1/3) of the initial acceleration. Hence, this is the required solution.
<em>Answer:</em>
<em>well..</em>
<em>Explana</em><em>tion</em><em>:</em>
<em>L</em><em>iquid</em><em> can flow but solid cannot because of differences in their properties</em>
<em>property of liquid which lets it flow:</em>
- <em>i</em><em>nter-particular</em><em> space is large</em>
- <em>inter-particular attraction is small</em><em> </em><em>t</em><em>hese</em><em> properties tend to make the molecules of liquid free to flow</em><em> </em>
<em>property</em><em> </em><em>of</em><em> </em><em>solid</em><em> </em><em>which</em><em> </em><em>tends</em><em> </em><em>to</em><em> </em><em>obstruct</em><em> </em><em>flow</em><em>:</em>
- <em>inter-particular</em><em> </em><em>spa</em><em>c</em><em>e</em><em> </em><em>is</em><em> </em><em>small</em><em> </em><em>and</em><em> </em><em>so</em><em> </em><em>it's </em><em>compac</em><em>t</em>
- <em>inter-molecular</em><em> </em><em>attra</em><em>ction</em><em> </em><em>is</em><em> </em><em>strong</em><em> </em><em>hence</em><em> </em><em>no</em><em> </em><em>tenden</em><em>cy</em><em> </em><em>to</em><em> </em><em>flow</em>
<em>H</em><em>o</em><em>p</em><em>e</em><em> </em><em>this</em><em> </em><em>helps</em><em>!</em>
Explanation:
We have,
Surface area, 
The current varies wrt time t as :

(a) At t = 2 seconds, electrical charge is given by :

(b) Current is given by :

Instantaneous current at t = 1 s is,

(c) Current is, 
Current density is given by electric current per unit area.

Therefore, it is the required explanation.