Light energy is defined as how nature moves energy at an extremely rapid rate, and it makes up about 99% of the body's atoms and cells, and signal all body parts to carry out their respective tasks. An example of light energy is the movement of a radio signal.
Answer:
30.63 m
Explanation:
From the question given above, the following data were obtained:
Total time (T) spent by the ball in air = 5 s
Maximum height (h) =.?
Next, we shall determine the time taken to reach the maximum height. This can be obtained as follow:
Total time (T) spent by the ball in air = 5 s
Time (t) taken to reach the maximum height =.?
T = 2t
5 = 2t
Divide both side by 2
t = 5/2
t = 2.5 s
Thus, the time (t) taken to reach the maximum height is 2.5 s
Finally, we shall determine the maximum height reached by the ball as follow:
Time (t) taken to reach the maximum height = 2.5 s
Acceleration due to gravity (g) = 9.8 m/s²
Maximum height (h) =.?
h = ½gt²
h = ½ × 9.8 × 2.5²
h = 4.9 × 6.25
h = 30.625 ≈ 30.63 m
Therefore, the maximum height reached by the cannon ball is 30.63 m
True! The mechanical advantage of the wheel and axle is equal to the ratio of the radius of the wheel over the radius of the axle.
Answer:
A) 1568.60 Hz
B) 1437.15 Hz
Explanation:
This change is frequency happens due to doppler effect
The Doppler effect is the change in frequency of a wave in relation to an observer who is moving relative to the wave source

where
C = the propagation speed of waves in the medium;
Vr= is the speed of the receiver relative to the medium,(added to C, if the receiver is moving towards the source, subtracted if the receiver is moving away from the source;
Vs= the speed of the source relative to the medium, added to C, if the source is moving away from the receiver, subtracted if the source is moving towards the receiver.
A) Here the Source is moving towards the receiver(C-Vs)
and the receiver is standing still (Vr=0) therefore the observed frequency should get higher

B)Here the Source is moving away the receiver(C+Vs)
and the receiver is still not moving (Vr=0) therefore the observed frequency should be lesser
