1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nika2105 [10]
3 years ago
14

Use the figure to determine in what direction the north magnetic pole of the compass will point. What type of magnetic pole is t

he compass pointing toward?

Physics
1 answer:
Marat540 [252]3 years ago
8 0
The north magnetic pole of the compass will point north. The compass is pointing toward the south magnetic pole because opposite poles attract while like poles repel. This means that the north magnetic pole of the compass is actually attracted to the south magnetic pole of the Earth as if it was a magnet as well. 
You might be interested in
Convert 8.1 kilograms to grams
kirill115 [55]

Answer:

8100 g

Explanation:

8.1 kg × 1000

= 8100 g

6 0
3 years ago
Read 2 more answers
We want to design a cylindrical vacuum capacitor, with a given radius a for the outer cylindrical shell, that will be able to st
anastassius [24]

Solution :

a). Using Gauss's law :

  $E=\frac{Q}{4 \pi \epsilon_0r^2}$  ,    $b    .........(1)

Let $E=E_0,\ r=b$ in equation (1)

Therefore, $Q=4 \pi \epsilon_0b^2E_0$  .............(2)

$V_b-V_a = \int^a_b \vec E. d\vec l$

             $=\int^a_b E \ dx$

            $=\frac{Q}{4 \pi \epsilon_0} \int^a_b \frac{1}{x^2} \ dx$

            $=\frac{Q(a-b)}{4 \pi \epsilon_0 a b}$  ....................(3)

Therefore, $U=\frac{1}{2}Q \Delta V$

                     $=\frac{1}{2}(4 \pi \epsilon_0 b^2 E_0)\left(\frac{Q(a-b)}{4\pi \epsilon_0 a b}\right)$

                     $=\frac{4 \pi \epsilon_0}{2a} \ E^2_0 b^3(a-b)$  .............(4)

Now differentiating the equation (4) w.r.t. 'b', we get

$b=\frac{3}{4}a$  

Thus the radius for the inner cylinder conductor is $b=\frac{3}{4}a$

b). For the energy storage, substitute the radius in (4), we get

$U = 4 \pi\epsilon_0 \frac{27a^3E^2_0}{512}$

This is the amount of energy stored in the conductor.

8 0
3 years ago
What does a magnetic field look like <br>​
Lelechka [254]

Answer:Magnetic fields are invisible, at least usually. But scientists from NASA's Space Sciences Laboratory have made them visible as "animated photographs," using sound-controlled CGI and 3D compositing.

Explanation:

5 0
3 years ago
1. An object on Earth and the same object on the Moon would have a difference in
Feliz [49]

Answers: (1) a. weight, (2)b. Force changes by 2/9, (3)b. movement, (4)a. 40,000 Joules, (5)c. the soil will be 5°C.

<h2>Answer 1: a. weight</h2>

Mass and weight are very different concepts.  

Mass is the amount of matter that exists in a body, which only depends on the quantity and type of particles within it. This means mass is an intrinsic property of each body and remains the same regardless of where the body is located.  

On the other hand, weight is a measure of the gravitational force acting on an object and is directly proportional to the product of the mass m of the body by the acceleration of gravity g:  

W=m.g  

Then, since the Earth and the Moon have different values ​​of gravity, t<u>he weight of an object in each place will vary</u>, but its mass will not.

<h2>Answer 2: b. Force changes by 2/9</h2>

According to the law of universal gravitation, which is a classical physical law that describes the gravitational interaction between different bodies with mass:  

F=G\frac{m_{1}m_{2}}{r^2} (1)

Where:  

F is the module of the force exerted between both bodies  

G is the universal gravitation constant

m_{1} and m_{2} are the masses of both bodies.

r is the distance between both bodies

If we double the mass of one object (for example 2m_{1}) and triple the distance between both (for example 3r). The equation (1) will be rewritten as:

F=G\frac{2m_{1}m_{2}}{(3r)^2} (2)

F=\frac{2}{9}G\frac{m_{1}m_{2}}{r^2} (3)

If we compare (1) and (2) we will be able to see the force changes by 2/9.

<h2>Answer 3: b. movement</h2>

The Work W done by a Force F refers to the release of potential energy from a body that is <u>moved</u> by the application of that force to overcome a resistance along a path.  

When the applied force is constant and <u>the direction of the force and the direction of the movement are parallel,</u> the equation to calculate it is:  

W=(F)(d)

Now, <u>when they are not parallel, both directions form an angle</u>, let's call it \alpha. In that case the expression to calculate the Work is:  

W=Fdcos{\alpha}

Therefore, pushing on a rock accomplishes no work unless there is movement (independently of the fact that movement is parallel to the applied force or not).

<h2>Answer 4: a. 40,000 Joules</h2>

The Kinetic Energy is given by:

K=\frac{1}{2}mV^{2}   (4)

Where m is the mass of the body and V its velocity

For the first case (kinetic energy K_{1}=10000J  for a car at V_{1}=30 mph=13.4112m/s):

K_{1}=\frac{1}{2}mV_{1}^{2}   (5)

Finding m:

m=\frac{2K_{1}}{V_{1}^{2}}   (6)

m=\frac{2(10000J)}{(13.4112m/s)^{2}}   (7)

m=111.197kg   (8)

For the second case (unknown kinetic energy K_{2}  for a car with the same mass at V_{2}=60 mph=26.8224m/s):

K_{2}=\frac{1}{2}mV_{2}^{2}   (9)

K_{2}=\frac{1}{2}(111.197kg)(26.8224m/s)^{2}   (10)

K_{2}=40000J   (11)

<h2>Answer 5: c. the soil will be 5°C</h2>

The formula to calculate the amount of calories Q is:

Q=m. c. \Delta T   (12)

Where:

m  is the mass

c  is the specific heat of the element. For water is c_{w}=1 kcal/g\°C  and for soil is c_{s}=0.20 kcal/g\°C  

\Delta T  is the variation in temperature (the amount we want to find for both elements)

This means we have to clear \Delta T from (12) :

\Delta T=\frac{Q}{m.c}   (13)

For Water:

\Delta T_{w}=\frac{Q_{w}}{m_{w}.c_{w}}   (14)

\Delta T_{w}=\frac{1kcal}{(1kg)(1 kcal/g\°C)}   (15)

\Delta T_{w}=1\°C)}   (16)

For Soil:

\Delta T_{s}=\frac{Q_{s}}{m_{s.c_{s}}   (17)

\Delta T_{s}=\frac{1kcal}{(1kg)(0.20 kcal/g\°C)}   (18)

\Delta T_{s}=5\°C)}   (19)

Hence the correct option is c.

5 0
3 years ago
Read 2 more answers
What do you call an increase in the magnitude of velocity
Vlad1618 [11]

Any change in the magnitude or direction of velocity is "acceleration".

4 0
3 years ago
Other questions:
  • Kinetic energy of an object is equal to
    12·1 answer
  • A block is suspended from a spring. The spring is stretched .2 meters. If the spring constant is 200 newtons per meters, what is
    7·1 answer
  • Samuel adds a teaspoon of salt to a glass of water. He notices that the salt disappears. Samuel takes a sip to discover that the
    7·2 answers
  • a wave in the ocean has an amplitude of 3m. Winds pick up suddenly, increasing the wave's amplitude to 6m. How does this change
    7·1 answer
  • What kind of medium does ocean waves have
    11·1 answer
  • When a wire loop is connected to a battery, what is produced in the loop?
    8·1 answer
  • Bài 1. Ở nhiệt độ 17°C, có bao nhiêu phần trăm phân tử khí có các vận tốc sai khác
    8·1 answer
  • How is enormous energy produced in sun?write with chical equation.​
    14·1 answer
  • An object is acted by force of 22 newtons to the right and a force of 13 newtons to left ​
    11·1 answer
  • Plz help me thank you
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!