So in your question where ask to find the dipole moment of HI in C.M. So in my calculation by converting the given data from Debyes to Coulomb Meteres is that 1 Dyebes is equals to 3.33X10^(-30) C.M and the answer would be 1.40X10(-30)C.M. I hope you are satisfied with my answer and feel free to ask for more
Explanation:
Given:
Solving for
:

where:

Integrating to get
with initial conditions
:

Integrating to get x with initial conditions x(0) = 0:

When t=T:


The change of state that is occurring is from the liquid state to the solid state.
D. all of these
all of these use electricity
Hope I helped!