<span>b) The force with a distance of 150 km is 889 N
c) The force with a distance of 50 km is 8000 N
This question looks like a mixture of a question and a critique of a previous answer. I'll attempt to address the original question.
Since the radius of the spherical objects isn't mentioned anywhere, I will assume that the distance from the center of each spherical object is what's being given. The gravitational force between two masses is given as
F = (G M1 M2)/r^2
where
F = Force
G = gravitational constant
M1 = Mass 1
M2 = Mass 2
r = distance between center of masses for the two masses.
So with a r value of 100 km, we have a force of 2000 Newtons. If we change the distance to 150 km, that increases the distance by a factor of 1.5 and since the force varies with the inverse square, we get the original force divided by 2.25. And 2000 / 2.25 = 888.88888.... when rounded to 3 digits gives us 889.
Looking at what looks like an answer of 890 in the question is explainable as someone rounding incorrectly to 2 significant digits.
If the distance is changed to 50 km from the original 100 km, then you have half the distance (50/100 = 0.5) and the squaring will give you a new divisor of 0.25, and 2000 / 0.25 = 8000. So the force increases to 8000 Newtons.</span>
Answer:
Student 2 protons and valence electrons
Answer
given,
y(x,t)= 2.20 mm cos[( 7.02 rad/m )x+( 743 rad/s )t]
length of the rope = 1.33 m
mass of the rope = 3.31 g
comparing the given equation from the general wave equation
y(x,t)= A cos[k x+ω t]
A is amplitude
now on comparing
a) Amplitude = 2.20 mm
b) frequency =


f = 118.25 Hz
c) wavelength




d) speed


v = 105.84 m/s
e) direction of the motion will be in negative x-direction
f) tension


T = 27.87 N
g) Power transmitted by the wave


P = 0.438 W
The third choice.
The driver wants to see the object that is behind him. The light reflects off the mirror into the eyes of the driver portraying the object behind him