We can use the pythagorean theorem to solve this
The pythagorean theorem = a^2 + b^2 = c^2, while
a = one leg
b = the second leg
c = the hypotenuse
In this problem,
a = 3
b = 15
c = ?
Let's plug our values into the pythagorean theorem
(3)^2 + (15)^2 = c^2
9 + 225 = c^2
Add together the left side
234 = c^2
Take the sqrt of both sides
sqrt(234) = c
The length of BC = sqrt(234)
Given:
A line passes through the points (-1, -1) and (5,8).
To find:
Which points lie on the same line?
Solution:
If a line passes through two points, then the equation of the line is:

A line passes through the points (-1, -1) and (5,8). So, the equation of the line is:




Multiply both sides by 2.




So, the equation of the line is
.
Now, check each point for this equation.
Putting
, we get




Similarly,
For
.
For
.
For
.
For
.
For
.
Therefore, the points (-3,-4), (9,14), (1,2) and (3,5) lie on the same line but the points (4,7) and (-2,-2) are not on that line.
Answer:
3,27
Step-by-step explanation:
Glass bottles =total number of bottles - numeber of bottle of plastic
gass bottles=50-19=31 bottles of glass.
percent of the bottles are glass=(number of bottles of glass*100%) / total number of bottles.
percent of the glass bottles=(31 bottles * 100%) / 50 bottles=62%
Answer: the percent of the bottles of glas is 62%
Answer:
Cuadrilátero A: 
Cuadrilátero B: 
Step-by-step explanation:
Existen dos formas distintas de determinar las áreas de cada cuadrilátero:
(i) <em>Obtener el área de cada cuadrado y sumar los resultados.</em>
(ii) <em>Calcular los lados del cuadrilátero grande y determinar el área. </em>
Cuadrilátero A
Método (i)


Método (ii)


Cuadrilátero B
Método (i)


Método (ii)

