I think it might be the first answer dom f = {-4, 3, 5}
Hope it helps ;))
Answer:
Kindly check attached picture for detailed explanation
Step-by-step explanation:
Kindly check attached picture for detailed explanation
The size of the sample should be obtained at 2401 in order to be 95% confident
Given that:
Margi of error, 
Population proportion, 
To Find: The size of the sample that should be obtained in order to be 95% confident
Let the size of the sample be n
Using formula,

Therefore, the size of the sample should be obtained at 2401 in order to be 95% confident
Learn more about Population proportion here brainly.com/question/15703406
#SPJ4
Answer:
if you meant x squared the answer is 3x^2
Step-by-step explanation:
If f(x) is equal to 2x you can substitute x squared for f(x) and that would be x squared+x squared+x squared which is 3x^2
Answer: After about 9.03 hours the temperature first reach 82 degrees.
Step-by-step explanation:
The sinusoidal function is given by :
![y=A\sin[\omega(x-\alpha)]+C](https://tex.z-dn.net/?f=y%3DA%5Csin%5B%5Comega%28x-%5Calpha%29%5D%2BC)
where, A = amplitude;
, α= phase shift on the Y-axis and C = midline.
As per given,
Average daily temperature=
[midline is average of upper and lower limit.]
A= 97-85 = 12
Phase shift:
Period = 24 hours;

Substitute all values in sinusoidal function, we get
![y=12\sin[\dfrac{\pi}{12}(x-10)]+85](https://tex.z-dn.net/?f=y%3D12%5Csin%5B%5Cdfrac%7B%5Cpi%7D%7B12%7D%28x-10%29%5D%2B85)
Put y= 82, we get
![82=12\sin[\dfrac{\pi}{12}(x-10)]+85\\\\\Rightarrow\ -3= 12\sin[\dfrac{\pi}{12}(x-10)]\\\\=\dfrac{-1}{4}= \sin[\dfrac{\pi}{12}(x-10)]\\\\\Rightarrow\ \dfrac{\pi}{12}(x-10)=\sin^{-1}(\dfrac{-1}{4})\\\\\Rightarrow\ x-10=\dfrac{12}{\pi}(\sin^{-1}(\dfrac{-1}{4}))\\\\\Rightarrow\ x=\dfrac{12}{\pi}(\sin^{-1}(\dfrac{-1}{4}))+10\\\Rightarrow\ x\approx9.03](https://tex.z-dn.net/?f=82%3D12%5Csin%5B%5Cdfrac%7B%5Cpi%7D%7B12%7D%28x-10%29%5D%2B85%5C%5C%5C%5C%5CRightarrow%5C%20-3%3D%2012%5Csin%5B%5Cdfrac%7B%5Cpi%7D%7B12%7D%28x-10%29%5D%5C%5C%5C%5C%3D%5Cdfrac%7B-1%7D%7B4%7D%3D%20%5Csin%5B%5Cdfrac%7B%5Cpi%7D%7B12%7D%28x-10%29%5D%5C%5C%5C%5C%5CRightarrow%5C%20%5Cdfrac%7B%5Cpi%7D%7B12%7D%28x-10%29%3D%5Csin%5E%7B-1%7D%28%5Cdfrac%7B-1%7D%7B4%7D%29%5C%5C%5C%5C%5CRightarrow%5C%20x-10%3D%5Cdfrac%7B12%7D%7B%5Cpi%7D%28%5Csin%5E%7B-1%7D%28%5Cdfrac%7B-1%7D%7B4%7D%29%29%5C%5C%5C%5C%5CRightarrow%5C%20x%3D%5Cdfrac%7B12%7D%7B%5Cpi%7D%28%5Csin%5E%7B-1%7D%28%5Cdfrac%7B-1%7D%7B4%7D%29%29%2B10%5C%5C%5CRightarrow%5C%20x%5Capprox9.03)
Hence, After about 9.03 hours the temperature first reach 82 degrees.