Answer:
250ft
Step-by-step explanation:
45ft + 45ft of fencing for the two short ends. 80ft +80ft for the two long sides
45ft+45ft=90ft
80ft+80ft=160ft
90ft+160ft=250ft
Step-by-step explanation:
Part A:
So the height is going to be x when you fold the sides up. So that's one part of the volume but for the width it was going to be 4 but since two corners were cut out with the length x the new width is going to be (4-2x). The same thing applies for the length which should be 8 inches but since two corners were removed with the length x it's now (8-2x)
v = x(4-2x)(8-2x)
Part B:
The volume can be graphed although there must be a domain restriction since the height, width, or length cannot be negative. So let's look at each part of the equation
so for the x in front it must be greater than 0 to make sense
for the (4-2x), the x must be less than 2 or else the width is negative.
for the (8-2x) the x must be less than 4 or else the length is negative
so the domain is going to be restricted to 0 < x < 2 so all the dimensions are greater than 0
By using a graphing calculator you can see the maximum of the given equation with the domain restrictions is 0.845 which gives a volume of 12.317
Answer:
D. 12
Step-by-step explanation:
You can't know with only volume. Sorry.
Answer:
It is a perfect square. Explanation below.
Explanation:
Perfect squares are of the form
(
a
+
b
)
2
=
a
2
+
2
a
b
+
b
2
. In polynomials of x, the a-term is always x.(
(
x
+
c
)
2
=
x
2
+
2
c
x
+
c
2
)
x
2
+
8
x
+
16
is the given trinomial. Notice that the first term and the constant are both perfect squares:
x
2
is the square of x and 16 is the square of 4.
So we find that the first and last terms correspond to our expansion. Now we must check if the middle term,
8
x
is of the form
2
c
x
.
The middle term is twice the constant times x, so it is
2
×
4
×
x
=
8
x
.
Okay, we found out that the trinomial is of the form
(
x
+
c
)
2
, where
x
=
x
and
c
=
4
.
Let us rewrite it as
x
2
+
8
x
+
16
=
(
x
+
4
)
2
. Now we can say it is a perfect square, as it is the square of
(
x
+
4
)
.