The second one. It is the same as the original.
Need help myself not sure sorry
Answer:
There needs to be 174 Students in the 8th grade class.
Step-by-step explanation:
173(1/3) is 58
58+17=75
Answer:
16
Step-by-step explanation:
According to the given description, PS is the mid segment of the
Therefore by Mid-segment Theorem:
![PS = \frac{1}{2} QR \\ \\ PS = \frac{1}{2} \times 32 \\ \\ PS =16 \:](https://tex.z-dn.net/?f=PS%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%20QR%20%5C%5C%20%20%5C%5C%20PS%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%20%20%5Ctimes%2032%20%5C%5C%20%20%5C%5C%20PS%20%3D16%20%5C%3A%20)
Answer:segment YZ ≈ 19.4 inangle X ≈ 85.3°angle Z ≈ 26.7°Explanation:1) Given two side lenghts and one angle you can use sine law:
![\frac{sinA}{a} = \frac{sinB}{b} = \frac{sinC}{c}](https://tex.z-dn.net/?f=%20%5Cfrac%7BsinA%7D%7Ba%7D%20%3D%20%5Cfrac%7BsinB%7D%7Bb%7D%20%3D%20%5Cfrac%7BsinC%7D%7Bc%7D%20)
2) Using the sides with length 43 in and 40in, and the corresponding opposite angles, Z and 68°, that leads to:
![\frac{sinZ}{43} = \frac{sin68}{40}](https://tex.z-dn.net/?f=%20%5Cfrac%7BsinZ%7D%7B43%7D%20%3D%20%5Cfrac%7Bsin68%7D%7B40%7D%20)
From which you can clear sinZ and get:
sinZ = 43 × sin(68) / 40 = 0.9967
⇒ Z = arcsine(0.9967) ≈ 85.36°
3) The third angle can be determined using 85.36° + 68° + X = 180°
⇒ X = 180° - 85.36° - 68° = 26.64°.
4) Finally, you can apply the law of sine to obtain the last missing length:
![\frac{x}{sin(26.64)} = \frac{40}{sin(68)}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bx%7D%7Bsin%2826.64%29%7D%20%3D%20%5Cfrac%7B40%7D%7Bsin%2868%29%7D%20)
From which: x = 40 × sin(26.64°) / sin(68°) = 19.34 in
The answer, then is:
segment YZ ≈ 19.4 in
angle X ≈ 85.3°
angle Z ≈ 26.7°