viewing any chemical reaction in a labitory
Answer:
[CO] = 0.078M
[Cl2] = 0.078M
[COCl2] = 0.477M
Explanation:
Based on the reaction:
CO(g) Cl2(g) ⇄ COCl2(g)
<em>Where equilibrium constant, kc, is:</em>
kc = 77.5 = [COCl2] / [CO] [Cl2]
[] represents the equilibrium concentration of each gas. The initial concentration of each gas is:
[CO] = 0.555mol/1.00L = 0.555M
[Cl2] = 0.555M
And equilibrium concentrations are:
[CO] = 0.555M - x
[Cl2] = 0.555M - x
[COCl2] = x
<em>Where x is reaction coordinate</em>
Replacing in kc expression:
77.5 = [x] / [0.555M - x] [0.555M - x]
77.5 = x / 0.308025 - 1.11 x + x²
23.8719 - 86.025 x + 77.5 x² = x
23.8719 - 87.025 x + 77.5 x² = 0
x = 0.477M. Right answer
x = 0.646M. False answer. Produce negative concentrations
Replacing:
<h3>[CO] = 0.555M - 0.477M = 0.078M</h3><h3>[Cl2] = 0.078M</h3><h3>[COCl2] = 0.477M</h3>
And those concentrations are the equilibrium concentrations
A covalent bond is formed between H and Br
The structure of HBr is as follows
H —Br
Formal charge for atoms are the charges for individual atoms in compounds.
Formal charge can be calculated as follows ;
Formal charge of atom = number of valence electrons -( number of bonds + number of lone pair electrons)
H has 1 valence electron, 1 bond and 0 number of lone pair electrons
Formal charge of H = 1 -1 -0 = 0
H has 0 charge
A solution with a higher concentration of hydroxide ions than hydrogen ions is basic solution.
This solution formed by Base dissolved in water and release hydroxide ions.
The PH of the solution is greater than 7