The denominator( s ) we are given are
, and . The first thing we want to do is factor the expressions, to make this easier -

This expression is a perfect square, as ( x )^2 = x^2, ( 2 )^2 = 4, 2 * ( x ) * ( 2 ) = 4x. Thus, the simplified expression should be the following -

The other expression is, on the other hand, not a perfect square so we must break this expression into groups and attempt factorization -

Combining ( x + 2 )^2 and ( x + 2 )( x + 3 ), the expression that contains factors of each is ( x + 2 )^2 * ( x + 3 ), or in other words the LCM.
<u><em>Solution = </em></u>
<u><em /></u>
I think it’s q12 or C hope this helped
I believe it’s b I am not sure
Step by step explanation
Well, kid all you have to do is add like terms and place the subjected terms in alphabetical order.
1. (6y-2c+2)+(-3y+4c)
2. 6y + - 3y = 3y
3. -2c+4c =2c
4. the positive in the first set of parenthesis has to term other than its number by itself. (so it remains alone and only positive 2)
5. take all the separate term answers and add them into a complete expression- 3y + 2c + 2: and that is all
The <em>xy</em>-plane has a normal vector of 〈0, 0, 1〉, and any plane parallel to it will have the same normal vector.
Then the equation of the plane through (6, 3, 2) that is parallel to the <em>xy</em>-plane has equation
〈<em>x</em> - 6, <em>y</em> - 3, <em>z</em> - 2〉 • 〈0, 0, 1〉 = 0
==> <em>z</em> - 2 = 0
==> <em>z</em> = 2