Answer:
50 kg water.
Step-by-step explanation:
We have been given that the number of kilograms of water in a human body varies directly as the mass of the body.
We know that two directly proportional quantities are in form
, where y varies directly with x and k is constant of variation.
We are told that an 87-kg person contains 58 kg of water. We can represent this information in an equation as:

Let us find the constant of variation as:



The equation
represents the relation between water (y) in a human body with respect to mass of the body (x).
To find the amount of water in a 75-kg person, we will substitute
in our given equation and solve for y.



Therefore, there are 50 kg of water in a 75-kg person.