Answer:
20cal/s
Explanation:
Question:
There are two questions. The first one has been answered:
From the formular, Power = Q/t = (kA∆T)/l
the amount heat depends on the duration of time interval, length of the iron rod, the thermal conductivity of iron and the temperature difference between the ends of the rod.
The amount of heat that flows through the rod by conduction during a given time interval does not depend upon the mass of the iron rod (D).
Second question:
The ends of a cylindrical steel rod are maintained at two different temperatures. The rod conducts heat from one end to the other at a rate of 10 cal/s. At what rate would a steel rod twice as long and twice the diameter conduct heat between the same two temperatures?
Solution:
Power = 10cal/s
Power = energy per unit time = Q/t
Where Q = energy
Power = (kA∆T)/l
k = thermal conductivity of iron
A = area
Area = πr^2
r = radius
Diameter = d = 2r
r = d/2
Area = (πd^2)/4
Length = l
∆T = change in temperature
10 = (kA∆T)/l
For a steel rod with length doubled and diameter doubled:
Let Length (L) = 2l
Diameter (D)= 2d
Area = π [(2d)^2]/4 = (π4d^2)/4
Area = 4(πd^2)/4
Using the formula Power = (kA∆T)/l, insert the new values for A and l
Power = [k × 4(πd^2)/4 × ∆T]/2l
Power = [4k((πd^2)/4) ∆T]/2l
Power = [(4/2)×k((πd^2)/4) ∆T]/l
Power = [2k(A) ×∆T]/l = 2(kA∆T)/l
Power of a steel that has its length doubled and diameter doubled = 2(kA∆T)/l
Recall initial Power = (kA∆T)/l = 10cal/s
And ∆T is the same
2[(kA∆T)/l] = 2 × 10
Power of a steel that has its length doubled and diameter doubled = 20cal/s