Answer:
121 Joules
6.16717 m
Explanation:
m = Mass of the rocket = 2 kg
k = Spring constant = 800 N/m
x = Compression of spring = 0.55 m
Here, the kinetic energy of the spring and rocket will balance each other

The initial velocity of the rocket is 11 m/s = u.
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s² = g

The maximum height of the rocket will be 6.16717 m
Potential energy is given by

The potential energy of the rocket at the maximum height will be 121 Joules
Explanation:
a) Given in the y direction (taking down to be positive):
Δy = 50 m
v₀ = 0 m/s
a = 10 m/s²
Find: t
Δy = v₀ t + ½ at²
50 m = (0 m/s) t + ½ (10 m/s²) t²
t = 3.2 s
b) Given in the x direction:
v₀ = 12 m/s
a = 0 m/s²
t = 3.2 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (12 m/s) (3.2 s) + ½ (0 m/s²) (3.2 s)²
Δx = 38 m
a. 46 m/s east
The jet here is moving with a uniform accelerated motion, so we can use the following suvat equation to find its velocity:

where
v is the velocity calculated at time t
u is the initial velocity
a is the acceleration
The jet in the problem has, taking east as positive direction:
u = +16 m/s is the initial velocity
is the acceleration
Substituting t = 10 s, we find the final velocity of the jet:
And since the result is positive, the direction is east.
b. 310 m
The displacement of the jet can be found using another suvat equation
where
s is the displacement
u is the initial velocity
a is the acceleration
t is the time
For the jet in this problem,
u = +16 m/s is the initial velocity
is the acceleration
t = 10 s is the time
Substituting into the equation,

B) a new element is formed