In that case, their momentum must be equal.
So, m1v1 = m2v2
20 * 20 = 40 * v2
v2 = 400 / 40
v2 = 10
In short, Your Answer would be: 10 m/s
Hope this helps!
Known variables
d=4.6m
initial velocity=0m/s
downward acceleration=-9.8m/s2
d=1/2gt2
4.6=1/2 -9.8 t2
t=0.93s
Answer:
Explanation:
The question here is that if sneezy hands from a similar rope while delivering presents at the earth's equator, what will be the tension in the rope be. Here is the solution:The tension on the rope when it is at pole, T= 455 NTo find, the tension, t= mgTo solve for mass, m= t/g. Substituting this we have, m=455/9.8. m=46.43 kgAssume that the downwards acceleration is, a= -46.43 m/s^2.T = mg + maT = (46.43 kg) ( 9.8 m/s^2) - (46.43 kg) (-46.43 m/s^2)T = 455.01 kg-m/s^2 - -2155.74 kg-m/s^2T = 2610.75 kg-m/s^2 = 2610.75 N