1) describe the life cycle of a star before it collapses into a black hole.
1) describe the life cycle of a star before it collapses into a black hole.ans: A star's life cycle is determined by its mass. The larger its mass, the shorter its life cycle. A star's mass is determined by the amount of matter that is available in its nebula, the giant cloud of gas and dust from which it was born. Over time, the hydrogen gas in the nebula is pulled together by gravity and it begins to spin. As the gas spins faster, it heats up and becomes as a protostar. Eventually the temperature reaches 15,000,000 degrees and nuclear fusion occurs in the cloud's core. The cloud begins to glow brightly, contracts a little, and becomes stable. It is now a main sequence star and will remain in this stage, shining for millions to billions of years to come. This is the stage our Sun is at right now.
2) describe the life cycle of a star before it becomes a dwarf.
ans: The life cycle of a low mass star (left oval) and a high mass star (right oval). ... As the core collapses, the outer layers of the star are expelled. A planetary nebula is formed by the outer layers. The core remains as a white dwarf and eventually cools to become a black dwarf.
3) what is the likely outcome of our sun?
ans: All stars die, and eventually — in about 5 billion years — our sun will, too. Once its supply of hydrogen is exhausted, the final, dramatic stages of its life will unfold, as our host star expands to become a red giant and then tears its body to pieces to condense into a white dwarf.
Momentum is conserved if and only if sum of all forces which are exserted on system equals zero. In our situation there are only internal forces, so by Newton's third law their vector sum is 0.
So
.
Kinetic energy of system at first:
. After:
. The secret is that other energy is in work of deformation forces (they in turn heat a bullet and a block).
Answer is A)
Potential energy is the store she energy from an object this could include rubber bands. Kinetic energy is the energy that deals with motion a good example is a person running
Answer:
0.0360531138247 V/m
Explanation:
= Resistivity of gold =
(General value)
I = Current = 940 mA
d = Diameter = 0.9 mm
A = Area = 
E = Electric field
Resistivity is given by

The electric field in the wire is 0.0360531138247 V/m
Answer:
Centripetal acceleration,

Explanation:
Centripetal acceleration:
Centripetal acceleration is the idea that any object moving in a circle, in something called circular motion, will have an acceleration vector pointed towards the center of that circle.
Centripetal means towards the center.
Examples of centripetal acceleration (acceleration pointing towards the center of rotation) include such situations as cars moving on the cicular part of the road.
An acceleration is a change in velocity.
Formula for Centripetal acceleration:

Given here,
Velocity = 4.5 m/s
radius = 7.7 m
To Find :

Solution:
We have,

Substituting given value in it we get

Centripetal acceleration,
