Answer:
D.
Explanation:
8.1X10 to the power of 6 Joules.
<span>We can answer this using
the rotational version of the kinematic equations:</span><span>
θ = θ₀ + ω₀<span>t + ½αt²
-----> 1</span></span>
ω² = ω₀² + 2αθ
-----> 2
Where:
θ = final angular
displacement = 70.4 rad
θ₀ = initial
angular displacement = 0
ω₀ = initial angular
speed
ω = final angular speed
t = time = 3.80 s
α = angular acceleration
= -5.20 rad/s^2
Substituting the values
into equation 1:<span>
70.4 = 0 + ω₀(3.80)
+ ½(-5.20)(3.80)² </span><span>
ω₀ = (70.4
+ 37.544) / 3.80 </span><span>
ω₀ = 28.406
rad/s </span><span>
Using equation 2:
ω² = (28.406)² + 2(-5.2)70.4
ω = 8.65 rad/s
</span>
Answer:
1. Thermal Energy is the internal energy that is produced from the temperature of a heated substance/object.
2. From the potato to the soup and from the soup to the surrounding room
Explanation:
1. When an object or substance is heated it causes a rise in temperature which makes the atoms and molecules within the object move/vibrate faster and collide with each other. This kinetic energy energy comes from the temperature of the object being heated and is the thermal energy.
2. The atoms present in a hot object have higher kinetic energy when compared to a colder object and usually flow towards the colder object. This is why it is possible for the hot potato whose temperature is higher than the bowl of soup to flow towards the soup and from the soup to the surrounding room.
Answer:
Explanation:
Given an LC circuit
Frequency of oscillation
f = 299 kHz = 299,000 Hz
AT t = 0 , the plate A has maximum positive charge
A. At t > 0, the plate again positive charge, the required time is
t =
t = 1 / f
t = 1 / 299,000
t = 0.00000334448 seconds
t = 3.34 × 10^-6 seconds
t = 3.34 μs
it will be maximum after integral cycle t' = 3.34•n μs
Where n = 1,2,3,4....
B. After every odd multiples of n, other plate will be maximum positive charge, at time equals
t" = ½(2n—1)•t
t'' = ½(2n—1) 3.34 μs
t" = (2n —1) 1.67 μs
where n = 1,2,3...
C. After every half of t,inductor have maximum magnetic field at time
t'' = ½ × t'
t''' = ½(2n—1) 1.67μs
t"' = (2n —1) 0.836 μs
where n = 1,2,3...
Health and safety are two reasons