Answer:
259 Hz or 269 Hz
Explanation:
Beat: This is the phenomenon obtained when two notes of nearly equal frequency are sounded together. The S.I unit of beat is Hertz (Hz).
From the question,
Beat = f₂-f₁................ Equation 1
Note: The frequency of the other instrument is either f₁ or f₂.
If the unknown instrument's frequency is f₁,
Then,
f₁ = f₂-beat............ equation 2
Given: f₂ = 264 Hz, Beat = 5 Hz
Substitute into equation 2
f₁ = 264-5
f₁ = 259 Hz.
But if the unknown frequency is f₂,
Then,
f₂ = f₁+Beat................. Equation 3
f₂ = 264+5
f₂ = 269 Hz.
Hence the beat could be 259 Hz or 269 Hz
Answer:
100J
Explanation:
Kinetic energy=1/2mv^2
Kinetic energy=(1/2 x 8)x5^2
Kinetic energy=4x25
Kinetic energy=100
100J
Answer:
- Its entropy increases.
Explanation:
Entropy is defined as a 'measure of the amount of energy in a physical system that cannot be used to do work.' It is also employed to denote randomness, disorder, or uncertainty of the arrangement/system. In the given system, the melting of ice denotes the 'increase in entropy' as the amount of energy unavailable to do work increases('absorbs 3.33 x 10³J of energy'). Thus, <u>this signifies that the entropy increases with a rise in temperature as it allows the substance to have greater kinetic energy</u>.
Answer:
m = 3 kg
The mass m is 3 kg
Explanation:
From the equations of motion;
s = 0.5(u+v)t
Making t thr subject of formula;
t = 2s/(u+v)
t = time taken
s = distance travelled during deceleration = 62.5 m
u = initial speed = 25 m/s
v = final velocity = 0
Substituting the given values;
t = (2×62.5)/(25+0)
t = 5
Since, t = 5 the acceleration during this period is;
acceleration a = ∆v/t = (v-u)/t
a = (25)/5
a = 5 m/s^2
Force F = mass × acceleration
F = ma
Making m the subject of formula;
m = F/a
net force F = 15.0N
Substituting the values
m = 15/5
m = 3 kg
The mass m is 3 kg
The answer is a.12.5kg because i just did the test and it was correct.
hope this helps