Answer:
did you ever get the answer
Answer:
μ = 0.6
Explanation:
given,
speed of car = 29.7 m/s
Radius of curve = 50 m
θ = 30.0°
minimum static friction = ?
now,
writing all the forces acting along y-direction
N cos θ - f sinθ = mg
N cos θ -μN sinθ = mg

now, writing the forces acting along x- direction
N sin θ + f cos θ = F_{net}
N cos θ + μN sinθ = F_{net}

taking cos θ from nominator and denominator




now, inserting all the given values

μ = 0.6
Answer:
A
Explanation:
because thats what I put and got it right
Answer:
The change in temperature is
Explanation:
From the question we are told that
The temperature coefficient is 
The resistance of the filament is mathematically represented as
![R = R_o [1 + \alpha \Delta T]](https://tex.z-dn.net/?f=R%20%20%3D%20%20R_o%20%5B1%20%2B%20%5Calpha%20%20%5CDelta%20T%5D)
Where
is the initial resistance
Making the change in temperature the subject of the formula
![\Delta T = \frac{1}{\alpha } [\frac{R}{R_o} - 1 ]](https://tex.z-dn.net/?f=%5CDelta%20T%20%3D%20%5Cfrac%7B1%7D%7B%5Calpha%20%7D%20%5B%5Cfrac%7BR%7D%7BR_o%7D%20-%201%20%5D)
Now from ohm law

This implies that current varies inversely with current so

Substituting this we have
![\Delta T = \frac{1}{\alpha } [\frac{I_o}{I} - 1 ]](https://tex.z-dn.net/?f=%5CDelta%20T%20%20%3D%20%5Cfrac%7B1%7D%7B%5Calpha%20%7D%20%5B%5Cfrac%7BI_o%7D%7BI%7D%20-%201%20%5D)
From the question we are told that

Substituting this we have
![\Delta T = \frac{1}{\alpha } [\frac{I_o}{\frac{I_o}{8} } - 1 ]](https://tex.z-dn.net/?f=%5CDelta%20T%20%20%3D%20%5Cfrac%7B1%7D%7B%5Calpha%20%7D%20%5B%5Cfrac%7BI_o%7D%7B%5Cfrac%7BI_o%7D%7B8%7D%20%7D%20-%201%20%5D)
=> 
Answer:
Cart A
Explanation:
Momentum can be computed by finding the product of mass and velocity. To solve this, you can use the formula below to find the greatest momentum:
p = mv
where:
p = momentum (kgm/s) m = mass (kg) v = velocity (m/s)
Because carts are moving along with the weights, we need to consider the whole system. This means that you need to add in the masses and the mass of the cart.
<u>Cart A:</u>
m = 200kg + 0 kg = 200 kg
v = 4.8 m/s
p = 200kg x 4.8 m/s = 960 kg-m/s
<u>Cart B:</u>
m = 200kg + 20 kg = 220 kg
v = 4.0 m/s
p = 220kg x 4.0 m/s = 880 kg-m/s
<u>Cart C:</u>
m = 200kg + 40 kg = 240 kg
v = 3.8 m/s
p = 240kg x 3.8 m/s = 912 kg-m/s
<u>Cart D:</u>
m = 200kg + 60 kg = 260 kg
v = 3.5 m/s
p = 260kg x 3.5 m/s = 910 kg-m/s
As you can see, Cart A has the greatest momentum.