Answer:
2
Step-by-step explanation:
To find the scale of dilation, you have to compare the ratio of the after transform with before transform according to the center of dilation. In this case, the center of dilation is Q so you have to compare QA' : QA. We know that QA= 1.25 and AA' is 1.25. The distance of QA' will be:
QA'= QA + AA'= 1.25 + 1.25 = 2.5
The scale factor will be:
scale factor= QA' : QA.= 2.5 : 1.25
scale factor= 2
![\bf \qquad \qquad \textit{direct proportional variation} \\\\ \textit{\underline{y} varies directly with \underline{x}}\qquad \qquad y=kx\impliedby \begin{array}{llll} k=constant\ of\\ \qquad variation \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ y = 4\frac{2}{3}x\qquad \qquad yes\qquad \checkmark\qquad \qquad k = 4\frac{2}{3} \\\\[-0.35em] ~\dotfill\\\\ y=3(x-1)\implies \stackrel{\textit{distributing}}{y=3x-3}\qquad \qquad yes\qquad \checkmark \qquad \qquad k=3](https://tex.z-dn.net/?f=%5Cbf%20%5Cqquad%20%5Cqquad%20%5Ctextit%7Bdirect%20proportional%20variation%7D%20%5C%5C%5C%5C%20%5Ctextit%7B%5Cunderline%7By%7D%20varies%20directly%20with%20%5Cunderline%7Bx%7D%7D%5Cqquad%20%5Cqquad%20y%3Dkx%5Cimpliedby%20%5Cbegin%7Barray%7D%7Bllll%7D%20k%3Dconstant%5C%20of%5C%5C%20%5Cqquad%20variation%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20y%20%3D%204%5Cfrac%7B2%7D%7B3%7Dx%5Cqquad%20%5Cqquad%20yes%5Cqquad%20%5Ccheckmark%5Cqquad%20%5Cqquad%20k%20%3D%204%5Cfrac%7B2%7D%7B3%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20y%3D3%28x-1%29%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bdistributing%7D%7D%7By%3D3x-3%7D%5Cqquad%20%5Cqquad%20yes%5Cqquad%20%5Ccheckmark%20%5Cqquad%20%5Cqquad%20k%3D3)
bear in mind that, direct proportional equations have a y-intercept.
for y = kx, is pretty much y = kx + 0, where 0 = y-intercept.
and the "k" constant of proportionality, is pretty much just its slope.