1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zhannawk [14.2K]
3 years ago
9

Solve the system of linear equations below.

Mathematics
1 answer:
sergiy2304 [10]3 years ago
6 0

Answer:

Step-by-step explanation:

Let's use the addition/elimination method to solve this.  If we multiply the first equation through by -1 we can eliminate the x terms.  Doing that gives us:

 -x  +  3y  =  3

  x  +  3y  =  9

The x's subtract each other away leaving us with

6y = 12 so

y = 2.

Now we will plug in 2 for y in either of the original equations to solve for x:

x + 3(2) = 9 and

x + 6 = 9 so

x = 3

The coordinate for the solution is (3, 2) or x = 3, y = 2

The second choice down is the one you want.

You might be interested in
1. Use the cosine and sine functions to express the exact coordinates of P in terms of angle θ.
Luden [163]

Answer:

For a point defined bt a radius R, and an angle θ measured from the positive x-axis (like the one in the image)

The transformation to rectangular coordinates is written as:

x = R*cos(θ)

y = R*sin(θ)

Here we are in the unit circle, so we have a radius equal to 1, so R = 1.

Then the exact coordinates of the point are:

(cos(θ), sin(θ))

2) We want to mark a point Q in the unit circle sch that the tangent has a value of 0.

Remember that:

tan(x) = sin(x)/cos(x)

So if sin(x) = 0, then:

tan(x) = sin(x)/cos(x) = 0/cos(x) = 0

So tan(x) is 0 in the points such that the sine function is zero.

These values are:

sin(0°) = 0

sin(180°) = 0

Then the two possible points where the tangent is zero are the ones drawn in the image below.

7 0
3 years ago
How do you solve this? Thank you
V125BC [204]
2)

a)

\bf a^{\frac{{ n}}{{ m}}} \implies  \sqrt[{ m}]{a^{ n}} \qquad \qquad
\sqrt[{ m}]{a^{ n}}\implies a^{\frac{{ n}}{{ m}}}\\\\
-------------------------------\\\\
(4x^5\cdot x^{\frac{1}{3}})+(2x^4\cdot x^{\frac{1}{3}})-(7x^3\cdot x^{\frac{1}{3}})+(3x^2\cdot x^{\frac{1}{3}})\\\\+(9x^1\cdot x^{\frac{1}{3}})-(1\cdot x^{\frac{1}{3}})
\\\\\\
4x^{5+\frac{1}{3}}+2x^{4+\frac{1}{3}}-7x^{3+\frac{1}{3}}+9x^{1+\frac{1}{3}}-x^{\frac{1}{3}}

\bf 4x^{\frac{16}{3}}+2x^{\frac{13}{3}}-7x^{\frac{10}{3}}+9x^{\frac{4}{3}}-x^{\frac{1}{3}}
\\\\\\
4\sqrt[3]{x^{16}}+2\sqrt[3]{x^{13}}-7\sqrt[3]{x^{10}}+9\sqrt[3]{x^4}-\sqrt[3]{x}

b)

\bf \cfrac{4x^5+2x^4-7x^3+3x^2+9x-1}{x^{\frac{1}{3}}}\impliedby \textit{distributing the denominator}
\\\\\\
\cfrac{4x^5}{x^{\frac{1}{3}}}+\cfrac{2x^4}{x^{\frac{1}{3}}}-\cfrac{7x^3}{x^{\frac{1}{3}}}+\cfrac{3x^2}{x^{\frac{1}{3}}}+\cfrac{9x}{x^{\frac{1}{3}}}-\cfrac{1}{x^{\frac{1}{3}}}
\\\\\\
(4x^5\cdot x^{-\frac{1}{3}})+(2x^4\cdot x^{-\frac{1}{3}})-(7x^3\cdot x^{-\frac{1}{3}})+(3x^2\cdot x^{-\frac{1}{3}})\\\\+(9x^1\cdot x^{-\frac{1}{3}})-(1\cdot x^{-\frac{1}{3}})

\bf 4x^{5-\frac{1}{3}}+2x^{4-\frac{1}{3}}-7x^{3-\frac{1}{3}}+9x^{1-\frac{1}{3}}-x^{-\frac{1}{3}}
\\\\\\
4x^{\frac{14}{3}}+2x^{\frac{11}{3}}-7x^{\frac{8}{3}}+9x^{\frac{2}{3}}-x^{-\frac{1}{3}}
\\\\\\
4\sqrt[3]{x^{14}}+2\sqrt[3]{x^{11}}-7\sqrt[3]{x^{8}}+9\sqrt[3]{x^{2}}-\frac{1}{\sqrt[3]{x}}



3)

\bf \begin{cases}
f(x)=\sqrt{x}-5x\implies &f(x)x^{\frac{1}{2}}-5x\\\\
g(x)=5x^2-2x+\sqrt[5]{x}\implies &g(x)=5x^2-2x+x^{\frac{1}{5}}
\end{cases}
\\\\\\
\textit{let's multiply the terms from f(x) by each term in g(x)}
\\\\\\
x^{\frac{1}{2}}(5x^2-2x+x^{\frac{1}{5}})\implies x^{\frac{1}{2}}5x^2-x^{\frac{1}{2}}2x+x^{\frac{1}{2}}x^{\frac{1}{5}}

\bf 5x^{\frac{1}{2}+2}-2x^{\frac{1}{2}+1}+x^{\frac{1}{2}+\frac{1}{5}}\implies \boxed{5x^{\frac{5}{2}}-2x^{\frac{3}{2}}+x^{\frac{7}{10}}}
\\\\\\
-5x(5x^2-2x+x^{\frac{1}{5}})\implies -5x5x^2-5x2x+5xx^{\frac{1}{5}}
\\\\\\
-25x^3+10x^2-5x^{1+\frac{1}{5}}\implies \boxed{-25x^3+10x^2-5x^{\frac{6}{5}}}

\bf 5\sqrt{x^5}-2\sqrt{x^3}+\sqrt[10]{x^7}-25x^3+10x^2-5\sqrt[5]{x^6}
6 0
3 years ago
Help me with question 7 pls ​
Marrrta [24]
If the coefficient of x^2 is negative, the graph will be n shaped and curve down instead of like a u shape if it was positive. If the vertex is below the x axis and curves down, it won’t pass the x axis, Tia is right.
5 0
3 years ago
Which of the following can not be used to calculate 32% of 50
stepladder [879]

Answer:

the answer is 16

Step-by-step explanation:

6 0
3 years ago
Solve for x. <br><br> a²x+(a-8)=(a+8)x
Sergio [31]
a^2x+(a-8)=(a+8)x\\\\(a+8)x=a^2x+(a-8)\ \ \ \ |subtract\ a^2x\ from\ both\ sides\\\\(a+8)x-a^2x=a-8\\\\(a+8-a^2)x=a-8\ \ \ \ |divide\ both\ sides\ by\ (a+8-a^2)\\\\\huge\boxed{x=\frac{a-8}{a+8-a^2}}\to\huge\boxed{x=\frac{8-x}{a^2-a-8}}
6 0
3 years ago
Read 2 more answers
Other questions:
  • Need help quickly help me pleas
    5·2 answers
  • The total sales were $200 more than the manager's prediction. If x represents the manager prediction, write an expression to rep
    10·1 answer
  • 6/9=x/6 solve for the variable x
    8·1 answer
  • Gary took 7 hours
    10·1 answer
  • Solve the equation by factoring. 3x^2+17x+10=0
    15·1 answer
  • What is the inverse of the function g(x)=-\dfrac{2}{3}x-5g(x)=− 3 2 ​ x−5g, left parenthesis, x, right parenthesis, equals, minu
    8·1 answer
  • Find the sine and cosine of the angle whose terminal side passes through (-7,2)
    9·1 answer
  • Step 1: -3(+ 2) = 5(x - 7)
    15·1 answer
  • Use the pythagorean theorem
    11·1 answer
  • HAI HELP ME ASAP PLEASE
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!