Answer:
atoms chemical bonded into an orderly structure
Explanation:
Since
21.2 g H2O was produced, the amount of oxygen that reacted can be obtained
using stoichiometry. The balanced equation was given: 2H₂ + O₂ → 2H₂O and
the molar masses of the relevant species are also listed below. Thus, the
following equation is used to determine the amount of oxygen consumed.
Molar mass of H2O = 18
g/mol
Molar mass of O2 = 32
g/mol
21.2 g H20 x 1 mol
H2O/ 18 g H2O x 1 mol O2/ 2 mol H2O x 32 g O2/ 1 mol O2 = 18.8444 g O2
<span>We then determine that
18.84 g of O2 reacted to form 21.2 g H2O based on stoichiometry. It is
important to note that we do not need to consider the amount of H2 since we can
derive the amount of O2 from the product. Additionally, the amount of H2 is in
excess in the reaction.</span>
<span>In this work the performance of gypsum plaster and wood particle in pastes and composites was investigated. Wood particles of fineness 0.42 mm and 1.20 mm were employed. Natural wood particles and the treated ones in cold or hot water (80 °C) were performed. The effects of the extractives solutions from the treatments applied to the wood particles on wood-gypsum compatibility were studied. For pastes and composites, water-to-gypsum ratio was 0.65. Wood particles-to-gypsum plaster ratios were 5%, 10% and 15%, in mass. Kinetics of temperature, mechanical performance and dynamic elasticity modulus by ultrasound measurements were applied to evaluate the gypsum plaster pastes and its composites behaviors. Results show that the extractive solutions changed the time of gypsum plaster hydration, being more sensitive to hot water treatment. The composites compressive strength increase with the wood particles pretreatment. The best result was to room temperature treatment. The same performance was found to the modulus of elasticity. Treatments have improved significantly the flexural strength. The best wood particle content was 10%. These results show the possibility of using this wood waste with an easy and simple treatment to make eco-efficient building materials.</span>
Answer:
Explanation:
to put this plainly after putting strong electrolytes in water they dissolve to nothing but ions they give you an example and definition of a strong electrolyte I suggest you read those and see if you come up with what I gave you they also tell you that not all strong electrolytes dissolve as strongly as others that are in the example.