Answer: option D. the ability of a base to react with a soluble metal salt.
Justification:
NaOH is a strong base, which means that in water it will dissociate according to this reaction:
- NaOH(aq) → Na⁺ (aq) + OH⁻ (aq)
On the other hand, CuSO₄ is a soluble ionic salt which in water will dissociate into its ions according to this other reaction:
Hence, in solution, the sodium ion (Na⁺) will react with the metal salt in a double replacement reaction, where the highly reactive sodium ion (Na⁺) will substitute the Cu²⁺ in the CuSO₄ to form the sodium sulfate salt, Na₂SO₄ (water soluble), and the copper(II) hydroxide, Cu(OH)₂ (insoluble).
That is what the given reaction represents:
CuSO₄ (aq) + 2NaOH(aq) → Cu(OH)₂(s) + Na₂SO₄(aq)
↑ ↑ ↑ ↑
soluble metal salt strong base insoluble base solube salt
Answer:
Filtration
Explanation:
Filtration would be best because the sand particles would be trapped in the filter paper and the water would go through so the mixture would be separated
Answer:

Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to calculate the required new volume by using the Charles' law as a directly proportional relationship between temperature and volume:

In such a way, we solve for V2 and plug in V1, T1 and T2 to obtain:

Regards!
The answer for this issue is:
The chemical equation is: HBz + H2O <- - > H3O+ + Bz-
Ka = 6.4X10^-5 = [H3O+][Bz-]/[HBz]
Let x = [H3O+] = [Bz-], and [HBz] = 0.5 - x.
Accept that x is little contrasted with 0.5 M. At that point,
Ka = 6.4X10^-5 = x^2/0.5
x = [H3O+] = 5.6X10^-3 M
pH = 2.25
(x is without a doubt little contrasted with 0.5, so the presumption above was OK to make)
Answer:
Explanation:Are You From Milo?