Answer:
The chemical equation needs to be balanced so that it follows the law of conservation of mass. A balanced chemical equation occurs when the number of the different atoms of elements in the reactants side is equal to that of the products side.
The molarity of Barium Hydroxide is 0.289 M.
<u>Explanation:</u>
We have to write the balanced equation as,
Ba(OH)₂ + 2 HNO₃ → Ba(NO₃)₂ + 2 H₂O
We need 2 moles of nitric acid to react with a mole of Barium hydroxide, so we can write the law of volumetric analysis as,
V1M1 = 2 V2M2
Here V1 and M1 are the volume and molarity of nitric acid
V2 and M2 are the volume and molarity of Barium hydroxide.
So the molarity of Ba(OH)₂, can be found as,

= 0.289 M
Answer:
50
Explanation:
We will need a balanced equation with masses, moles, and molar masses of the compounds involved.
1. Gather all the information in one place with molar masses above the formulas and masses below them.
Mᵣ: 30.01 32.00 46.01
2NO + O₂ ⟶ 2NO₂
Mass/g: 80.00 16.00
2. Calculate the moles of each reactant

3. Calculate the moles of NO₂ we can obtain from each reactant
From NO:
The molar ratio is 2 mol NO₂:2 mol NO

From O₂:
The molar ratio is 2 mol NO₂:1 mol O₂

4. Identify the limiting and excess reactants
The limiting reactant is O₂ because it gives the smaller amount of NO₂.
The excess reactant is NO.
5. Mass of excess reactant
(a) Moles of NO reacted
The molar ratio is 2 mol NO:1 mol O₂

(b) Mass of NO reacted

(c) Mass of NO remaining
Mass remaining = original mass – mass reacted = (80.00 - 30.01) g = 50 g NO
Answer:
C₃H₄O₄
Explanation:
In order to get the empirical formula of a compound, we have to follow a series of steps.
Step 1: Divide the percent by mass of each element by its atomic mass.
C: 34.6/12.01 = 2.88
H: 3.9/1.01 = 3.86
O: 61.5/16.00 = 3.84
Step 2: Divide all the numbers by the smallest one, i.e., 2.88
C: 2.88/2.88 = 1
H: 3.86/2.88 ≈ 1.34
O: 3.84/2.88 ≈ 1.33
Step 3: Multiply all the numbers by a number that makes all of them integer
C: 1 × 3 = 3
H: 1.34 × 3 = 4
O: 1.33 × 3 = 4
The empirical formula is C₃H₄O₄.