Answer:
6.4 L
Explanation:
When all other variables are held constant, you can use Boyle's Law to find the missing volume:
P₁V₁ = P₂V₂
In this equation, "P₁" and "V₁" represent the initial pressure and volume. "P₂" and "V₂" represent the final pressure and volume. You can find the theoretical volume by plugging the given values into the equation and simplifying.
P₁ = 3.2 atm P₂ = 1.0 atm
V₁ = 2.0 L V₂ = ? L
P₁V₁ = P₂V₂ <----- Boyle's Law
(3.2 atm)(2.0 L) = (1.0 atm)V₂ <----- Insert values
6.4 = (1.0 atm)V₂ <----- Simplify left side
6.4 = V₂ <----- Divide both sides by 1.0
You can boil or evaporate the water and the salt will be left behind as a solid. If you want to collect the water, you can use distillation. This works because salt has a much higher boiling point than water. One way to separate salt and water at home is to boil the salt water in a pot with a lid. So, I would say maybe oil.
You would have to run 100 kilometers across it once. Then you will have to run 10 meters across it because a football field is 110 meters according to the NFL’s website
Answer:
6.66 s will it take for [AB] to reach 1/3 of its initial concentration 1.50 mol/L.
Explanation:
![Rate = k[AB]^2](https://tex.z-dn.net/?f=Rate%20%3D%20k%5BAB%5D%5E2)
The order of the reaction is 2.
Integrated rate law for second order kinetic is:
Where,
is the initial concentration = 1.50 mol/L
is the final concentration = 1/3 of initial concentration =
= 0.5 mol/L
Rate constant, k = 0.2 L/mol*s
Applying in the above equation as:-


<u>6.66 s will it take for [AB] to reach 1/3 of its initial concentration 1.50 mol/L.</u>