Answer:
(a) r = 6.26 * 10⁻⁷cm
(b) r₂ = 6.05 * 10⁻⁷cm
Explanation:
Using the sedimentation coefficient formula;
s = M(1-Vρ) / Nf ; where s is sedimentation coefficient, M is molecular weight, V is specific volume of protein, p is density of the solvent, N is Avogadro number, f if frictional force = 6πnr, n is viscosity of the medium, r is radius of particle
s = M ( 1 - Vρ) / N*6πnr
making r sbjct of formula, r = M (1 - Vρ) / N*6πnrs
Note: S = 10⁻¹³ sec, 1 KDalton = 1 *10³ g/mol, I cP = 0.01 g/cm/s
r = {(3.1 * 10⁵ g/mol)(1 - (0.732 cm³/g)(1 g/cm³)} / { (6.02 * 10²³)(6π)(0.01 g/cm/s)(11.7 * 10⁻¹³ sec)
r = 6.26 * 10⁻⁷cm
b. Using the formula r₂/r₁ = s₁/s₂
s₂ = 0.035 + 1s₁ = 1.035s₁
making r₂ subject of formula; r₂ = (s₁ * r₁) / s₂ = (s₁ * r₁) / 1.035s₁
r₂ = 6.3 * 10⁻⁷cm / 1.035
r₂ = 6.05 * 10⁻⁷cm
Additional information
Relative atomic mass(Ar) : A=7, G=16
The empirical formula : A₂G
<h3>Further explanation</h3>
Given
3.5g of element A
4.0g of element G
Required
the empirical formula for this compound
Solution
The empirical formula is the smallest comparison of atoms of compound forming elements.
The empirical formula also shows the simplest mole ratio of the constituent elements of the compound
mol of element A :

mol of element G :

mol ratio A : G = 0.5 : 0.25 = 2 : 1
0.5
Explanation:
Given parameters:
Mass of Ca²⁺ = 10g
unknown:
Equivalent weight = ?
Solution:
Equivalent weight that is the amount of electrons which a substance gains or loses per mole.
Ca²⁺ has +3 charge
It lost 2e⁻;
therefore;
In 1 mole of Ca²⁺, we have 2 equivalent weight
1 mol Ca²⁺ = 2eq. wts.
1 mol Ca x (40 g / 1 mol ) x (1 mol / 2 eq.wts.) = 20.0 g = 1 eq.wt.
Therefore;
10.0 g Ca²⁺ x (1 eq.wt. / 20.0 g) = 0.5 eq.wts.
learn more:
Molar mass brainly.com/question/2861244
#learnwithBrainly
Answer:
The answer is burning wood
Explanation:
Answer:
it can be revised at any time.
Explanation: