1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
uysha [10]
3 years ago
13

85 x + 1.09 = 96.90 i need help

Mathematics
1 answer:
alexandr1967 [171]3 years ago
8 0

Answer:

x = 1.13

Step-by-step explanation:

You might be interested in
Solve 73 make sure to also define the limits in the parts a and b
Aleks04 [339]

73.

f(x)=\frac{3x^4+3x^3-36x^2}{x^4-25x^2+144}

a)

\lim_{x\to\infty}f(x)=\lim_{x\to\infty}(\frac{3+\frac{3}{x}-\frac{36}{x^2}}{1-\frac{25}{x^2}+\frac{144}{x^4}})=3\lim_{x\to-\infty}f(x)=\lim_{x\to-\infty}(\frac{3+\frac{3}{x}-\frac{36}{x^2}}{1-\frac{25}{x^2}+\frac{144}{x^4}})=3\cdot\frac{1}{2}=3

b)

Since we can't divide by zero, we need to find when:

x^4-2x^2+144=0

But before, we can factor the numerator and the denominator:

\begin{gathered} \frac{3x^2(x^2+x-12)}{x^4-25x^2+144}=\frac{3x^2((x+4)(x-3))}{(x-3)(x-3)(x+4)(x+4)} \\ so: \\ \frac{3x^2}{(x+3)(x-4)} \end{gathered}

Now, we can conclude that the vertical asymptotes are located at:

\begin{gathered} (x+3)(x-4)=0 \\ so: \\ x=-3 \\ x=4 \end{gathered}

so, for x = -3:

\lim_{x\to-3^-}f(x)=\lim_{x\to-3^-}-\frac{162}{x^4-25x^2+144}=-162(-\infty)=\infty\lim_{x\to-3^+}f(x)=\lim_{x\to-3^+}-\frac{162}{x^4-25x^2+144}=-162(\infty)=-\infty

For x = 4:

\lim_{x\to4^-}f(x)=\lim_{n\to4^-}\frac{384}{x^4-25x^2+144}=384(-\infty)=-\infty\lim_{x\to4^-}f(x)=\lim_{n\to4^-}\frac{384}{x^4-25x^2+144}=384(-\infty)=-\infty

4 0
1 year ago
2 if x = 137,2° and sin(x-y) Determine the numerical value of: cos y.tanx y = 114,99​
Amanda [17]

Answer:

....................

3 0
3 years ago
Use spherical coordinates. evaluate (9 − x2 − y2) dv, where h is the solid hemisphere x2 + y2 + z2 ≤ 4, z ≥ 0.
avanturin [10]
In spherical coordinates, we have

\begin{cases}x=\rho\cos\theta\sin\varphi\\y=\rho\sin\theta\sin\varphi\\z=\rho\cos\varphi\end{cases}

which gives volume element

\mathrm dV=\mathrm dx\,\mathrm dy\,\mathrm dz=\rho^2\sin\varphi\,\mathrm d\rho\,\mathrm d\varphi\,\mathrm d\theta

and so the triple integral is given by

\displaystyle\iiint_H(9-x^2-y^2)\,\mathrm dV
=\displaystyle\int_{\theta=0}^{\theta=2\pi}\int_{\varphi=0}^{\varphi=\pi/2}\int_{\rho=0}^{\rho=2}(9-\rho^2\sin^2\varphi)\rho^2\sin\varphi\,\mathrm d\rho\,\mathrm d\varphi\,\mathrm d\theta
=\displaystyle2\pi\int_{\varphi=0}^{\varphi=\pi/2}\int_{\rho=0}^{\rho=2}(9\rho^2\sin\varphi-\rho^4\sin^3\varphi)\,\mathrm d\rho\,\mathrm d\varphi
=\dfrac{592\pi}{15}
4 0
3 years ago
Which situation CANNOT be represented by this equation? 3x+4=19
8090 [49]
I'm going with B Pennt is seling candles for 4$ each at a fund raiser if I'm right please give me branlest
3 0
3 years ago
Read 2 more answers
Enter the unknown number for n.<br><br> 12.66 − n = 7.64 Brainliest..........
Gemiola [76]

Answer:

Step-by-step explanation:

12.66-n=7.64

12.66-7.64=n

5.02=n

5 0
3 years ago
Read 2 more answers
Other questions:
  • Use place value to find the product of 60 x 4 =
    6·1 answer
  • Suppose f(x)=x^2-2 find the graph of f(1/2x)
    5·2 answers
  • Arrange 31/40, 78%, 0.7 in ascending order
    15·2 answers
  • Tom's age is 5 more than twice Di*k's age.
    5·1 answer
  • Alicia paid $1.32 for a bag of pinto beans. The beans cost $.55 per lb. how much did the bag of pinto beans weigh
    8·1 answer
  • 1? + 2? + 3? = 51. 2? - 1? = 4. List 1?, 2?, 3? in the format of 1?,2?,3? without spaces. (Find 1?,2?,3? in integer form)
    11·1 answer
  • The Foot Locker is having a 60% off sale on shorts. John paid $18 for a pair of shorts. What was the original price of the short
    9·1 answer
  • Help on 4 plz quick also if you can
    9·1 answer
  • PLEASE PLEASE HELP ME!!!!!! DO NOT DO IT FOR POINTS! I GENUINELY NEED HELP!
    5·1 answer
  • Please Help me to answerthe questions and options are in picture
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!