If you notice in the graph for antibiotic A, the number of bacteria actually INCREASES as time increases after the antibiotic was given. In the second graph, the amount of bacteria increases just a little bit (likely as the antibiotic sets in) and then decreases until no bacteria is left at all. This means that the antibiotic was the most successful because not only did the amount of bacteria decrease over time, but also all of the bacteria were eventually killed.
The last graph is shown as no antibiotic given. This is a graph showing the control group. There is always a control group in an experiment where nothing is done to the group. This is used to compare the results in the end of the experiment.
Answer:
The correct answer is 4.58 grams.
Explanation:
Based on the Faraday's law of electrolysis, at the time of electrolysis, the amount of deposited substance is directly equivalent to the concentration of the flow of charge all through the solution. If current, I, is passed for time, t, seconds and w is the concentration of the substance deposited, then w is directly proportional to I*t or w = zIt (Here z refers to the electrochemical equivalent or the amount deposited when 1 C is passed).
For the reaction, n * 96500 C = molar mass
1C = molar mass/n*96500 = Equivalent wt / 96500
w = Equivalent wt / 96500 * I * t
In the given reaction,
Pb + PbO2 + 2HSO4- + 2H+ → 2PbSO4 + 2H2O, n = 2, the current or I drawn is 350 A, for time, t 12.2 seconds.
Now putting the values in the equation we get,
w = 207.19 / 2 * 96500 * 350 * 12.2 ( The molecular weight of Pb is 207.19 and the equivalent weight of Pb is 207.19 / 2)
w = 4.58 gm.
a) CH2O
each element can be divided by 2
b) BCl3
the molecule is already in it's empirical formula
c) CH4
the molecule is already in it's empirical formula
d)CH2O
each element can be divided by 6
Answer: the answer to your question is 303.26 g/mol
Explanation:
The answer is na3po4+3koh=3naoh+k3po4