1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hram777 [196]
3 years ago
13

Let A = {a, b, c}, B = {b, c, d}, and C = {b, c, e}. (a) Find A ∪ (B ∩ C), (A ∪ B) ∩ C, and (A ∪ B) ∩ (A ∪ C). (Enter your answe

r in set-roster notation.) A ∪ (B ∩ C) = (A ∪ B) ∩ C = (A ∪ B) ∩ (A ∪ C) = Which of these sets are equal? A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) (A ∪ B) ∩ C = (A ∪ B) ∩ (A ∪ C) A ∪ (B ∩ C) = (A ∪ B) ∩ C (b) Find A ∩ (B ∪ C), (A ∩ B) ∪ C, and (A ∩ B) ∪ (A ∩ C). (Enter your answer in set-roster notation.) A ∩ (B ∪ C) = (A ∩ B) ∪ C = (A ∩ B) ∪ (A ∩ C) = Which of these sets are equal? A ∩ (B ∪ C) = (A ∩ B) ∪ C (A ∩ B) ∪ C = (A ∩ B) ∪ (A ∩ C) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (c) Find (A − B) − C and A − (B − C). (Enter your answer in set-roster notation.) (A − B) − C = A − (B − C) = Are these sets equal? Yes No
Mathematics
1 answer:
wariber [46]3 years ago
4 0

Answer:

(a)

A\ u\ (B\ n\ C) = \{a,b,c\}

(A\ u\ B)\ n\ C = \{b,c\}

(A\ u\ B)\ n\ (A\ u\ C) = \{b,c\}

(A\ u\ B)\ n\ C = (A\ u\ B)\ n\ (A\ u\ C)

(b)

A\ n\ (B\ u\ C) = \{b,c\}

(A\ n\ B)\ u\ C = \{b,c,e\}

(A\ n\ B)\ u\ (A\ n\ C) = \{b,c\}

A\ n\ (B\ u\ C) = (A\ n\ B)\ u\ (A\ n\ C)

(c)

(A - B) - C = \{a\}

A - (B - C) = \{a,b,c\}

<em>They are not equal</em>

<em></em>

Step-by-step explanation:

Given

A= \{a,b,c\}

B =\{b,c,d\}

C = \{b,c,e\}

Solving (a):

A\ u\ (B\ n\ C)

(A\ u\ B)\ n\ C

(A\ u\ B)\ n\ (A\ u\ C)

A\ u\ (B\ n\ C)

B n C means common elements between B and C;

So:

B\ n\ C = \{b,c,d\}\ n\ \{b,c,e\}

B\ n\ C = \{b,c\}

So:

A\ u\ (B\ n\ C) = \{a,b,c\}\ u\ \{b,c\}

u means union (without repetition)

So:

A\ u\ (B\ n\ C) = \{a,b,c\}

Using the illustrations of u and n, we have:

(A\ u\ B)\ n\ C

(A\ u\ B)\ n\ C = (\{a,b,c\}\ u\ \{b,c,d\})\ n\ C

Solve the bracket

(A\ u\ B)\ n\ C = (\{a,b,c,d\})\ n\ C

Substitute the value of set C

(A\ u\ B)\ n\ C = \{a,b,c,d\}\ n\ \{b,c,e\}

Apply intersection rule

(A\ u\ B)\ n\ C = \{b,c\}

(A\ u\ B)\ n\ (A\ u\ C)

In above:

A\ u\ B = \{a,b,c,d\}

Solving A u C, we have:

A\ u\ C = \{a,b,c\}\ u\ \{b,c,e\}

Apply union rule

A\ u\ C = \{b,c\}

So:

(A\ u\ B)\ n\ (A\ u\ C) = \{a,b,c,d\}\ n\ \{b,c\}

(A\ u\ B)\ n\ (A\ u\ C) = \{b,c\}

<u>The equal sets</u>

We have:

A\ u\ (B\ n\ C) = \{a,b,c\}

(A\ u\ B)\ n\ C = \{b,c\}

(A\ u\ B)\ n\ (A\ u\ C) = \{b,c\}

So, the equal sets are:

(A\ u\ B)\ n\ C and (A\ u\ B)\ n\ (A\ u\ C)

They both equal to \{b,c\}

So:

(A\ u\ B)\ n\ C = (A\ u\ B)\ n\ (A\ u\ C)

Solving (b):

A\ n\ (B\ u\ C)

(A\ n\ B)\ u\ C

(A\ n\ B)\ u\ (A\ n\ C)

So, we have:

A\ n\ (B\ u\ C) = \{a,b,c\}\ n\ (\{b,c,d\}\ u\ \{b,c,e\})

Solve the bracket

A\ n\ (B\ u\ C) = \{a,b,c\}\ n\ (\{b,c,d,e\})

Apply intersection rule

A\ n\ (B\ u\ C) = \{b,c\}

(A\ n\ B)\ u\ C = (\{a,b,c\}\ n\ \{b,c,d\})\ u\ \{b,c,e\}

Solve the bracket

(A\ n\ B)\ u\ C = \{b,c\}\ u\ \{b,c,e\}

Apply union rule

(A\ n\ B)\ u\ C = \{b,c,e\}

(A\ n\ B)\ u\ (A\ n\ C) = (\{a,b,c\}\ n\ \{b,c,d\})\ u\ (\{a,b,c\}\ n\ \{b,c,e\})

Solve each bracket

(A\ n\ B)\ u\ (A\ n\ C) = \{b,c\}\ u\ \{b,c\}

Apply union rule

(A\ n\ B)\ u\ (A\ n\ C) = \{b,c\}

<u>The equal set</u>

We have:

A\ n\ (B\ u\ C) = \{b,c\}

(A\ n\ B)\ u\ C = \{b,c,e\}

(A\ n\ B)\ u\ (A\ n\ C) = \{b,c\}

So, the equal sets are:

A\ n\ (B\ u\ C) and (A\ n\ B)\ u\ (A\ n\ C)

They both equal to \{b,c\}

So:

A\ n\ (B\ u\ C) = (A\ n\ B)\ u\ (A\ n\ C)

Solving (c):

(A - B) - C

A - (B - C)

This illustrates difference.

A - B returns the elements in A and not B

Using that illustration, we have:

(A - B) - C = (\{a,b,c\} - \{b,c,d\}) - \{b,c,e\}

Solve the bracket

(A - B) - C = \{a\} - \{b,c,e\}

(A - B) - C = \{a\}

Similarly:

A - (B - C) = \{a,b,c\} - (\{b,c,d\} - \{b,c,e\})

A - (B - C) = \{a,b,c\} - \{d\}

A - (B - C) = \{a,b,c\}

<em>They are not equal</em>

You might be interested in
How can u find the perimeter in a graph
frozen [14]
Yeah you should try khan academy or Ytube
7 0
3 years ago
What does 10+q equal?
BlackZzzverrR [31]

Answer:

Well if no variable substitution is given its 10+q

10+q=10+q

7 0
3 years ago
Read 2 more answers
Please its really urgent, step by step working out
Karo-lina-s [1.5K]

Answer:

70.99

Step-by-step explanation:

Use Pythagorean Theorem to find the shortest distance.

80^2-50^2=3900

Square rt= 62.44

Subtract by 15

47.44

Next find half of the circular path it is (3.14 x 15)/2

23.55

Add 47.44+23.55=70.99

Hope this is correct

8 0
3 years ago
I really don't get this please help
Fiesta28 [93]
21 3/16...as a decimal
the 21 is a whole number and goes to the left of the decimal....and the fraction 3/16 goes to the right of the decimal.
3/16 = 0.1875....now add ur 21 and u get 21.1875 inches wide

2 3/8....as a decimal
3/8 = 0.375....now put ur 2 in there and it becomes 2.375 inches thick

4 0
3 years ago
What is the factor of x^2 -9x +18
Rashid [163]
X^2 - 9x + 18
factors of 18: 1*18, 2*9, 3*6,
the sums of the factors: 19, 11, 9
the positive 18 tells us both factors have the same sign, the negative 9 tells us they are both negative
(x - 3)(x - 6)
5 0
3 years ago
Other questions:
  • The value of the ratio of adults to children is 2/5. The ratio of adults to children is _____.
    15·1 answer
  • Rename number 680=_______tens
    7·2 answers
  • Help pls, do and workout number 5
    12·1 answer
  • DOES IT MAKE SENSE?
    10·1 answer
  • Please help with number 3 above!!! Please any help!
    7·1 answer
  • The maximum weight allowed per car on The Wildcat carnival ride is 221 pounds. Your friend weighs 60 pounds. To be able to ride
    8·2 answers
  • Plz help
    7·1 answer
  • Tessa conducts an experiment and obtains results that are statistically significant. What is meant by "statistically significant
    8·1 answer
  • Complete the table for the equation y = x - 2. Then use the table to graph the equation.
    11·1 answer
  • A truck driver makes a trip that covers 2,380 km in 28 hours. What is the driver's average speed in km/h?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!