Answer:
C.
Step-by-step explanation:
As seen below, the equation of a circle is (x - h)^2 + (y - k)2 = r^2.
In this case, h = the x-value of the center of the circle, which is -2, and k = the y-value of the center of the circle, which is 3. The radius r is 4.
(x - (-2))^2 + (y - (3))^2 = (4)^2
(x + 2)^2 + (y - 3)^2 = 16
This corresponds to answer choice C.
Hope this helps!
Check the picture below. So the parabola looks more or less like so.
![\bf \textit{horizontal parabola vertex form with focus point distance} \\\\ 4p(x- h)=(y- k)^2 \qquad \begin{cases} \stackrel{vertex}{(h,k)}\qquad \stackrel{focus~point}{(h+p,k)}\qquad \stackrel{directrix}{x=h-p}\\\\ p=\textit{distance from vertex to }\\ \qquad \textit{ focus or directrix}\\\\ \stackrel{"p"~is~negative}{op ens~\supset}\qquad \stackrel{"p"~is~positive}{op ens~\subset} \end{cases} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bhorizontal%20parabola%20vertex%20form%20with%20focus%20point%20distance%7D%20%5C%5C%5C%5C%204p%28x-%20h%29%3D%28y-%20k%29%5E2%20%5Cqquad%20%5Cbegin%7Bcases%7D%20%5Cstackrel%7Bvertex%7D%7B%28h%2Ck%29%7D%5Cqquad%20%5Cstackrel%7Bfocus~point%7D%7B%28h%2Bp%2Ck%29%7D%5Cqquad%20%5Cstackrel%7Bdirectrix%7D%7Bx%3Dh-p%7D%5C%5C%5C%5C%20p%3D%5Ctextit%7Bdistance%20from%20vertex%20to%20%7D%5C%5C%20%5Cqquad%20%5Ctextit%7B%20focus%20or%20directrix%7D%5C%5C%5C%5C%20%5Cstackrel%7B%22p%22~is~negative%7D%7Bop%20ens~%5Csupset%7D%5Cqquad%20%5Cstackrel%7B%22p%22~is~positive%7D%7Bop%20ens~%5Csubset%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf \begin{cases} h=-5\\ k=2\\ p=4 \end{cases}\implies 4(4)[x-(-5)]=[y-2]^2\implies 16(x+5)=(y-2)^2 \\\\\\ x+5=\cfrac{1}{16}(y-2)^2\implies x = \cfrac{1}{16}(y-2)^2-5](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Bcases%7D%20h%3D-5%5C%5C%20k%3D2%5C%5C%20p%3D4%20%5Cend%7Bcases%7D%5Cimplies%204%284%29%5Bx-%28-5%29%5D%3D%5By-2%5D%5E2%5Cimplies%2016%28x%2B5%29%3D%28y-2%29%5E2%20%5C%5C%5C%5C%5C%5C%20x%2B5%3D%5Ccfrac%7B1%7D%7B16%7D%28y-2%29%5E2%5Cimplies%20x%20%3D%20%5Ccfrac%7B1%7D%7B16%7D%28y-2%29%5E2-5)

Using the identity:

, we get:

There are two solutions to this equation:
1) 
Since the period of cosine is 2π, so 0 + 2π = 2π will also be a solution to the given equation
2)
Therefore, there are 3 solutions to the given trigonometric equation.
The mathematical expression is
5x = 1/4
Divide:
x = (1/4)/5 = (1/4)*5 = 5/4 (ANSWER)