1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kap26 [50]
3 years ago
8

HELPPPP!!!!!!! TIMEDDDDD!!!!!!!! ASPPP!!!!!!

Mathematics
2 answers:
Lilit [14]3 years ago
5 0

Answer:

C or 3

Step-by-step explanation:

It is the only one going in a pattern or arithmetic sequence

2 + 3 = 5

5 + 3 = 8

8 + 3 = 11

11 + 3 = 14

The relationship is 3

Volgvan3 years ago
3 0

Answer:

1, 2, 4, 8, 16

Step-by-step explanation:

Each gets higher everytime you multiply by 2

You might be interested in
How many faces does this pyramid have? A net has a rectangular base and 4 triangles on the sides. faces
IrinaK [193]

Answer:

5 faces

Step-by-step explanation:

<u><em>Faces:</em></u>

=> 1 rectangular face+4 triangular face = 5 faces

4 0
3 years ago
Read 2 more answers
Please answer this question, i request
Jet001 [13]

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

3 0
3 years ago
Solve -3.5 = for x using the multiplication property of equality. The operation in the problem is eration is Addition Subtractio
Gemiola [76]

The answer is the Division on the top The multiplication then -14

Step-by-step explanation: I hope this will help you

6 0
4 years ago
For a data set of weights? (pounds) and highway fuel consumption amounts? (mpg) of eight types of? automobile, the linear correl
liberstina [14]

Answer:

The correct option is;

Low

Step-by-step explanation:

Given that the P-value of the linear correlation = 0.001, we have that the P-value is a demonstration that a linear correlation that has a value in the range of the given correlation is ,most arguably very low

From the z-table, a P-value of 0.001 corresponds to a z-value of -3.09, we have that in a normal distribution since 95% of the scores have a z-score of between -2 and 2, the z-score of -3.09 is very distant from the mean and having a low value, whereby the P-value shows that the likelihood of finding another linear correlation that is as far from the mean as the given correlation  is very low.

8 0
3 years ago
Which is true about the solution to the system of inequalities shown? y less than or equal to 1/3x-1 and y less than or equal to
tekilochka [14]
Y≤x/3-1  AND y≤x/3-3

So for BOTH inequalities to be true:

y≤x/3-3


4 0
3 years ago
Other questions:
  • Which equation is a point slope form equation for line ABAB ?
    12·1 answer
  • What cross sections might you see when a plane intersects a cone that you would not see when a plane intersects a pyramid or a p
    7·1 answer
  • How do you solve this equation7x+9=3x+29
    9·1 answer
  • 3/12 in an improper fraction
    15·1 answer
  • Which Image shows the opposite of the opposite of 2/3 on a vertical number line
    6·2 answers
  • I need to know this question: 12x2+17x+6​
    7·2 answers
  • What is -0.14 written as a decimal
    11·2 answers
  • A woman drives an SUV that gets ​13 mi/gal (mpg). Her husband drives a hybrid that gets 65 mpg. Every​ week, they travel the sam
    12·1 answer
  • Solve pls brainliest
    6·2 answers
  • On the scale drawing of a car, the length from bumper to bumper is 6 inches. The car’s actual length, from bumper to bumper, is
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!