The balanced chemical reaction is written as :
Na2CO3<span> + 2HCl === 2NaCl + H2O + CO2
</span>
We are given the amount of NaCl to be produced from the reaction. This will be the starting point for the calculations. We do as follows:
120 g NaCl ( 1 mol / 58.44 g) ( 1 mol Na2CO3 / 2 mol NaCl)( 105.99 g / 1 mol ) = 1108.82 g Na2CO3 needed
Answer:
648.5 mL
Explanation:
Here we will assume that the pressure of the gas is constant, since it is not given or specified.
Therefore, we can use Charle's law, which states that:
"For an ideal gas kept at constant pressure, the volume of the gas is proportional to its absolute temperature"
Mathematically:

where
V is the volume of the gas
T is its absolute temperature
The equation can be rewritten as

where in this problem we have:
is the initial volume of the gas
is the initial temperature
is the final temperature
Solving for V2, we find the final volume of the gas:

The enzyme must attract substrates to its active state.
At the end of the reaction, products dissociate from the surface of the enzyme
A physical property of an element is a property of an element that can observed or measured without changing the chemical nature of the element.
A chemical property of an element is a property of an element that can only be observed or measure when the chemical property of the element is altered or changed.
Based on this;
The boiling point of bromine is a physical property of bromine.
The high reactivity of bromine with many elements is a chemical property of bromine.
Answer:
52.45g
Explanation:
The computation of the mass of pure acetic acid in 125mL of this solution is shown below:
The percentage of mass would be equivalent to the g of solute in each 100g of water
As we know that
density = mass ÷ volume
So,
Volume = mass ÷ density
V = 100g / 1.049 (g / ml)
V = 95.328 mL
Now In every 95,328 ml of C_2H_4O_2 there are 40g of C_2H_4O_2
i.e.
each 125ml of C_2H_4O_2 there are 52.45g
SO,
x = 40g. 125ml ÷ 95.328
x = 52.45g