6.11% w/v of Cu2+ implies that 6.11 g of Cu2+ is present in 100 ml of the solution
therefore, 250 ml of the solution would have: 250 ml * 6.11 g/100 ml = 15.275 g
# moles of Cu2+ = 15.275 g/63.546 g mole-1 = 0.2404 moles
1 mole of CuCl2 contain 1 mole of Cu2+ ion
Hence, 0.2404 moles of Cu2+ would correspond to 0.2404 moles of CuCl2
Molar mass of CuCl2 = 134.452 g/mole
The mass of CuCl2 required = 0.2404 moles * 134.452 g/mole = 32.32 grams
Answer:
7.00
Explanation:
When the solutions are mixed, the HCl dissociates to form the ions H+ and Cl-. The ion H+ will react with the NH3 to form NH4+. The stoichiometry for this is 1 mol of HCl to 1 mol of H+ to 1 mol of Cl-, and 1 mol of H+ to 1 mol of NH3 to 1 mol of NH4+.
First, let's find the number of moles of each one of them, multiplying the concentration by the volume:
nH+ = 0.15 M * 25 mL = 3.75 mmol
nNH3 = 0.52 M * 25 mL = 13 mmol
So, all the H+ is consumed, and the neutralization is completed, thus pH will be the pH of the solvent (water), pH = 7.00.
I believe the correct answer is the second option. There will be two cobalt atoms in one formula unit of cobalt (III) oxide. It has a chemical formula of Co2O3. This compound is does not naturally occur so it is being synthesized. It is mostly used as bleaching agent.
Answer:
2266g
Explanation:
mass = no.of molecules /6.o23*1o(23) * molar mass
molar mass of co2= 44g /mol
1.5 .10^25/6.023 .10^23 =51.5 moles of co2
51.5 .44g/mol =2266 g
Answer: Option d. pressure increase by a factor of 3
Explanation:
P1 = P
T1 = 300k
T2 = 900K
P2 =?
Volume is constant.
P1/T1 = P2/T2
P/300 = P2/900
P2 x 300 = P x 900
P2 = (P x 900)/300
P2 = 3P
The pressure increased by a factor of 3