Step-by-step explanation:
this is a linear programming problem, and we are expected to draw up the linear program for the solution of the problem.
The objective function is
Maximize
35A+42B+20C=P
subject to constraints(board and wicker)
The constraints are
board
7A+5B+4C=3000
wicker
4A+5B+3C=1400
A>0, B>0, C>0
Answer:
The perimeter of a rectangle is the sum of both lengths and both widths, which is equal to 54 meters. Let's call Length L and Width W.
The question is saying this: L = 3 meters + 3(W). We have 2 variables, which means we need at least 2 equations to solve. So far we have one, our second equation is from the perimeter.
2 lengths + 2 Widths = 54. Now, it's just a plug and chug.
2(3 + 3W) + 2W = 54.
6 + 6W + 2W = 54
8W = 48
W=6
L = 3 + 3(6) = 21
To double check: 2(21) + 2(6) = 42 + 12 = 54
The Width is 6 meters, and the Length is 21 meters.
Answer:
Below
Step-by-step explanation:
● cos O = 2/3
We khow that:
● cos^2(O) + sin^2(O) =1
So : sin^2 (O)= 1-cos^2(O)
● sin^2(O) = 1 -(2/3)^2 = 1-4/9 = 9/9-4/9 = 5/9
● sin O = √(5)/3 or sin O = -√(5)/3
So we deduce that tan O will have two values since we don't khow the size of O.
■■■■■■■■■■■■■■■■■■■■■■■■■
●Tan (O) = sin(O)/cos(O)
● tan (O) = (√(5)/3)÷(2/3) or tan(O) = (-√(5)/3)÷(2/3)
● tan (O) = √(5)/2 or tan(O) = -√(5)/2
Can you type the answers in plz. I can't see the pic