Answer:
(a) the input force is 36.56 N
(b) the input force is 37.49 N
Explanation:
Given;
density of hydraulic oil, ρ = 8.53 x 10² kg/m³
radius of plunger, r₁ = 0.135 m
radius of piston, r₂ = 5.43 x 10⁻³ m
Part (a) The input force needed to support 22600-N weight, when the bottom surfaces of the piston and plunger are at the same level;

Where;
P is pressure
F is force
A is circular area = πr²

Part (b) The input force needed to support 22600-N weight, when the bottom surface of the output plunger is 1.20 m above that of the input plunger

But, F = PA and A = πr²

the answer is A i took a test
Refer to the diagram shown below.
The initial KE (kinetic energy) of the system is
KE₁ = (1/2)mu²
After an inelastic collision, the two masses stick together.
Conservation of momentum requires that
m*u = 2m*v
Therefore
v = u/2
The final KE is
KE₂ = (1/2)(2m)v²
= m(u/2)²
= (1/4)mu²
= (1/2) KE₁
The loss in KE is
KE₁ - KE₂ = (1/2) KE₁.
Conservation of energy requires that the loss in KE be accounted for as thermal energy.
Answer: 1/2
The circular shape allows the tire to roll easily with the least amount of bumps or jolts
Gravitational potential energy=mass of object x gravitational field strength on earth(9.8 usually rounded to 10) x the height the object is held at
Therefore if two objects were held at the same height, the object with more mass(the heavier object) will fall faster because it's gravitational potential energy is greater than that of the lighter object