Answer:
The volume of the final solution, V = 0.0305L
Explanation:
Number of moles = Concentration * volume
Concentration of HA = 1.00 * 10⁻⁴M
Volume of HA = 1000mL = 1 L
Number of moles of HA = 1.00 * 10⁻⁴ * 1
Number of moles of HA = 1.00 * 10⁻⁴ mols
Equation of reaction:
HA → H⁺ + A⁻
If 1 mol of HA produces 1 mol of H⁺ and A⁻, 1.00 * 10⁻⁴ mol of HA will produce 1.00 * 10⁻⁴ mol of H⁺ and A⁻.
Since only 16% dissociation occurs = 0.16
Number of moles of H⁺ produced = 0.16 * 1.00 * 10⁻⁴
Number of moles of H⁺ produced = 1.6 * 10⁻⁵mols
Number of moles of A⁻ produced = 0.16 * 1.00 * 10⁻⁴
Number of moles of A⁻ produced = 1.6 * 10⁻⁵mols
Since 16% of HA dissociated into H⁺ and A⁻, 84% of HA is left
Number of mols of HA left = 0.84 * 1.00 * 10⁻⁴
Number of mols of HA left = 8.4 * 10⁻⁵mols
Concentration = num of moles/volume
Let the volume of the final solution be V
Conc of HA = 8.4 * 10⁻⁵/V
Conc of H⁺ = 1.6 * 10⁻⁵/V
Conc of A⁻ = 1.6 * 10⁻⁵/V
To calculate the dissociation constant
![k_{a} = [H^{+} ][A^{-} ]/[HA]](https://tex.z-dn.net/?f=k_%7Ba%7D%20%3D%20%5BH%5E%7B%2B%7D%20%5D%5BA%5E%7B-%7D%20%5D%2F%5BHA%5D)
![k_{a}= [1.6 * 10^{-5} /V][1.6 * 10^{-5} /V]/[8.4 * 10^{-5} /V]\\k_{a}= 3.05 * 10^{-6} /V\\k_{a} = 1.00 * 10^{-4}\\ 1.00 * 10^{-4} = 3.05 * 10^{-6} /V\\V= 3.05 * 10^{-6}/ 1.00 * 10^{-4}\\V=3.05 * 10^{-2}\\V=0.0305 L](https://tex.z-dn.net/?f=k_%7Ba%7D%3D%20%5B1.6%20%2A%2010%5E%7B-5%7D%20%2FV%5D%5B1.6%20%2A%2010%5E%7B-5%7D%20%2FV%5D%2F%5B8.4%20%2A%2010%5E%7B-5%7D%20%2FV%5D%5C%5Ck_%7Ba%7D%3D%203.05%20%2A%2010%5E%7B-6%7D%20%2FV%5C%5Ck_%7Ba%7D%20%3D%201.00%20%2A%2010%5E%7B-4%7D%5C%5C%201.00%20%2A%2010%5E%7B-4%7D%20%3D%203.05%20%2A%2010%5E%7B-6%7D%20%2FV%5C%5CV%3D%203.05%20%2A%2010%5E%7B-6%7D%2F%201.00%20%2A%2010%5E%7B-4%7D%5C%5CV%3D3.05%20%2A%2010%5E%7B-2%7D%5C%5CV%3D0.0305%20L)