Answer:
The total number of Cl atoms in 150mL of liquid CCl4 is 3.73*10²⁴.
Explanation:
First you must determine the mass of CCL4 present in 150mL of CCl4. Density is a quantity that allows us to measure the amount of mass in a certain volume of a substance, whose expression for its calculation is the quotient between the mass of a body and the volume it occupies:

In this case, the density value of d = 1.589 g/mL. Then, being the volume equal to 150 mL, the value of the mass can be calculated as:
mass= density*volume
mass=1.589 g/mL * 150 mL
mass= 238.35 g
Now, being the molar mass of CCl4 154 g/mol, the number of moles that 238.35 g represents is calculated as:

moles= 1.55
1 mole of the compound CCl4 contains 4 moles of Cl. Then, using a simple rule of three, it is possible to calculate the number of moles of Cl that 1.55 moles of CCl4 contain:

moles of Cl= 6.2
Avogadro's Number or Avogadro's Constant is called the number of particles that make up a substance (usually atoms or molecules) and that can be found in the amount of one mole of said substance. Its value is 6.023*10²³ particles per mole. Avogadro's number applies to any substance. In this case it can be applied as follows: if 1 mole of Cl contains 6.023*10²³ atoms, 6.2 moles of Cl how many atoms does it contain?

atoms of Cl= 3.73*10²⁴
<u><em>The total number of Cl atoms in 150mL of liquid CCl4 is 3.73*10²⁴.</em></u>
The value of the force, F₀, at equilibrium is equal to the horizontal
component of the tension in string 2.
Response:
- The value of F₀ so that string 1 remains vertical is approximately <u>0.377·M·g</u>
<h3>How can the equilibrium of forces be used to find the value of F₀?</h3>
Given:
The weight of the rod = The sum of the vertical forces in the strings
Therefore;
M·g = T₂·cos(37°) + T₁
The weight of the rod is at the middle.
Taking moment about point (2) gives;
M·g × L = T₁ × 2·L
Therefore;

Which gives;


F₀ = T₂·sin(37°)
Which gives;

<u />
Learn more about equilibrium of forces here:
brainly.com/question/6995192
Answer:
3.75 × 10⁻⁸ N
Explanation:
Given:
Intensity of the electromagnetic wave, I = 150 W/m²
Sides of the board = 25 cm (= 0.25 m) and 30 cm (= 0.30 m)
therefore,
the area of the rectangular box, A = 0.25 × 0.30 = 0.075 m²
Now,
force exerted on the card by the radiation, F =
here,
C is the speed of the light = 3 × 10⁸ m/s
on substituting the respective values, we get
F =
or
F = 3.75 × 10⁻⁸ N