Answer: 
<u>Step-by-step explanation:</u>
Think of the products row by row:
11 12 13 14 15 16 - 0 products greater than 6
21 22 23 24 25 26 - 3 products greater than 6
31 32 33 34 35 36 - 4 products greater than 6
41 42 43 44 45 46 - 5 products greater than 6
51 52 53 54 55 56 - 5 products greater than 6
61 62 63 64 65 66 - 5 products greater than 6

Answer:
a. p = the population proportion of UF students who would support making the Tuesday before Thanksgiving break a holiday.
Step-by-step explanation:
For each student, there are only two possible outcomes. Either they are in favor of making the Tuesday before Thanksgiving a holiday, or they are against. This means that we can solve this problem using concepts of the binomial probability distribution.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which
is the number of different combinatios of x objects from a set of n elements, given by the following formula.

And p is the probability of X happening.
So, the binomial probability distribution has two parameters, n and p.
In this problem, we have that
and
. So the parameter is
a. p = the population proportion of UF students who would support making the Tuesday before Thanksgiving break a holiday.
Answer:
hello i used this website called math-way and found the answer
x
=
−
3
Answer:
Look that the coordinates and trace those points to a corresponding number on the x or y axis. Then write the first number in the coordinate in the x value and the second number for the y value, repeat the process for the rest of the points.
Step-by-step explanation: