Answer:
d = 6.1m
n = 7km
Step-by-step explanation:
To find the variables, use tan
⇒ tan = 
finding d:
⇒tan 63 = 
tan of 63 is 1.963
⇒ 1.963 = 
multiply 3.1 on both sides
⇒ 1.963 x 3.1 =
x 3.1
⇒ 6.0853 = d
round to the nearest tenth:
⇒ 6.0853 = 6.1
finding n:
⇒ tan 45 = 
tan of 45 is 1
⇒ 1 = 
multiply 7 on both sides:
⇒ 1 x 7 =
x 7
7 = n
24
Using distributive property it would be 24.
the perimeter will then just be the sum of the distances of A, B and C, namely AB + BC + CA.
![\bf ~~~~~~~~~~~~\textit{distance between 2 points}\\\\A(\stackrel{x_1}{-2}~,~\stackrel{y_1}{-2})\qquadB(\stackrel{x_2}{0}~,~\stackrel{y_2}{5})\qquad \qquadd = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2}\\\\\\AB=\sqrt{[0-(-2)]^2+[5-(-2)]^2}\implies AB=\sqrt{(0+2)^2+(5+2)^2}\\\\\\AB=\sqrt{4+49}\implies \boxed{AB=\sqrt{53}}\\\\[-0.35em]\rule{34em}{0.25pt}\\\\B(\stackrel{x_2}{0}~,~\stackrel{y_2}{5})\qquad C(\stackrel{x_1}{3}~,~\stackrel{y_1}{1})\\\\\\BC=\sqrt{(3-0)^2+(1-5)^2}\implies BC=\sqrt{3^2+(-4)^2}](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%5C%5C%5C%5CA%28%5Cstackrel%7Bx_1%7D%7B-2%7D~%2C~%5Cstackrel%7By_1%7D%7B-2%7D%29%5CqquadB%28%5Cstackrel%7Bx_2%7D%7B0%7D~%2C~%5Cstackrel%7By_2%7D%7B5%7D%29%5Cqquad%20%5Cqquadd%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%5C%5C%5C%5C%5C%5CAB%3D%5Csqrt%7B%5B0-%28-2%29%5D%5E2%2B%5B5-%28-2%29%5D%5E2%7D%5Cimplies%20AB%3D%5Csqrt%7B%280%2B2%29%5E2%2B%285%2B2%29%5E2%7D%5C%5C%5C%5C%5C%5CAB%3D%5Csqrt%7B4%2B49%7D%5Cimplies%20%5Cboxed%7BAB%3D%5Csqrt%7B53%7D%7D%5C%5C%5C%5C%5B-0.35em%5D%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5CB%28%5Cstackrel%7Bx_2%7D%7B0%7D~%2C~%5Cstackrel%7By_2%7D%7B5%7D%29%5Cqquad%20C%28%5Cstackrel%7Bx_1%7D%7B3%7D~%2C~%5Cstackrel%7By_1%7D%7B1%7D%29%5C%5C%5C%5C%5C%5CBC%3D%5Csqrt%7B%283-0%29%5E2%2B%281-5%29%5E2%7D%5Cimplies%20BC%3D%5Csqrt%7B3%5E2%2B%28-4%29%5E2%7D)
![\bf BC=\sqrt{9+16}\implies \boxed{BC=5}\\\\[-0.35em]\rule{34em}{0.25pt}\\\\C(\stackrel{x_2}{3}~,~\stackrel{y_2}{1})\qquad A(\stackrel{x_1}{-2}~,~\stackrel{y_1}{-2})\\\\\\CA=\sqrt{(-2-3)^2+(-2-1)^2}\implies CA=\sqrt{(-5)^2+(-3)^2}\\\\\\CA=\sqrt{25+9}\implies \boxed{CA=\sqrt{34}}\\\\[-0.35em]\rule{34em}{0.25pt}\\\\~\hfill \stackrel{AB+BC+CA}{\approx 18.11}~\hfill](https://tex.z-dn.net/?f=%5Cbf%20BC%3D%5Csqrt%7B9%2B16%7D%5Cimplies%20%5Cboxed%7BBC%3D5%7D%5C%5C%5C%5C%5B-0.35em%5D%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5CC%28%5Cstackrel%7Bx_2%7D%7B3%7D~%2C~%5Cstackrel%7By_2%7D%7B1%7D%29%5Cqquad%20A%28%5Cstackrel%7Bx_1%7D%7B-2%7D~%2C~%5Cstackrel%7By_1%7D%7B-2%7D%29%5C%5C%5C%5C%5C%5CCA%3D%5Csqrt%7B%28-2-3%29%5E2%2B%28-2-1%29%5E2%7D%5Cimplies%20CA%3D%5Csqrt%7B%28-5%29%5E2%2B%28-3%29%5E2%7D%5C%5C%5C%5C%5C%5CCA%3D%5Csqrt%7B25%2B9%7D%5Cimplies%20%5Cboxed%7BCA%3D%5Csqrt%7B34%7D%7D%5C%5C%5C%5C%5B-0.35em%5D%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C~%5Chfill%20%5Cstackrel%7BAB%2BBC%2BCA%7D%7B%5Capprox%2018.11%7D~%5Chfill)
1) Solve one of the equations for either variable.
2) Substitute the expression from Step 1 into the other equation.
3) Solve the resulting equation.
4) Substitute the solution in Step 3 into one of the original equations to find the other variable.
5) Write the solution as an ordered pair.
Answer:
Feather, fork, baseball, desk, cow, tow truck, house, Earth, Sun
Step-by-step explanation:
The bigger the object, the more inertia it has, since it's harder to move a bigger object. So, since a feather is the smallest thing with the least amount mass, it should be the easiest to move, giving it the least amount of inertia. It's the opposite for the Sun, since it's the biggest object on the list.