Answer:
she needs to sell at least 44 cookies to make a $0.10 profit
Step-by-step explanation:
to find the answer all you have to do is divide 15.30 by 0.35
Answer: 5/12
Step-by-step explanation:
Answer:
549
Step-by-step explanation:
Kim Lu, a data entry clerk, earns $12.25 per hour. She worked 36 hours last week. She also worked 12 hours at a part-time job life guarding at $9.00 per hour. What was Kim's total straight-time pay for both jobs?
12.25 * 36 = 441
12 * 9 = 108
441 + 108 = 549
Wow !
OK. The line-up on the bench has two "zones" ...
-- One zone, consisting of exactly two people, the teacher and the difficult student.
Their identities don't change, and their arrangement doesn't change.
-- The other zone, consisting of the other 9 students.
They can line up in any possible way.
How many ways can you line up 9 students ?
The first one can be any one of 9. For each of these . . .
The second one can be any one of the remaining 8. For each of these . . .
The third one can be any one of the remaining 7. For each of these . . .
The fourth one can be any one of the remaining 6. For each of these . . .
The fifth one can be any one of the remaining 5. For each of these . . .
The sixth one can be any one of the remaining 4. For each of these . . .
The seventh one can be any one of the remaining 3. For each of these . . .
The eighth one can be either of the remaining 2. For each of these . . .
The ninth one must be the only one remaining student.
The total number of possible line-ups is
(9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1) = 9! = 362,880 .
But wait ! We're not done yet !
For each possible line-up, the teacher and the difficult student can sit
-- On the left end,
-- Between the 1st and 2nd students in the lineup,
-- Between the 2nd and 3rd students in the lineup,
-- Between the 3rd and 4th students in the lineup,
-- Between the 4th and 5th students in the lineup,
-- Between the 5th and 6th students in the lineup,
-- Between the 6th and 7th students in the lineup,
-- Between the 7th and 8th students in the lineup,
-- Between the 8th and 9th students in the lineup,
-- On the right end.
That's 10 different places to put the teacher and the difficult student,
in EACH possible line-up of the other 9 .
So the total total number of ways to do this is
(362,880) x (10) = 3,628,800 ways.
If they sit a different way at every game, the class can see a bunch of games
without duplicating their seating arrangement !
Around a track like you run for track meets its 4 so for 1/4 of a mile it would be 1