Answer:
Chemical reactions do not involve changes in the chemical bonds that join
atoms in compounds :
<u>False</u>
Explanation:
Chemical reaction are the reaction in which old bonds break and new bonds are formed . The formation of new bond result in formation of new compounds . This happen because new bond are result of linking different atoms by the bond.
For example : Water formation from Oxygen and Hydrogen is a chemical process :
![2H_{2}+O_{2}\rightarrow 2H_{2}O](https://tex.z-dn.net/?f=2H_%7B2%7D%2BO_%7B2%7D%5Crightarrow%202H_%7B2%7DO)
Original(old) bonds are :
H-H bond in H2 and O-O bonds in O2
In H2 = Hydrogen is joined to Hydrogen
IN O2 = Oxygen is joined to oxygen
New Bonds =
O-H bonds in water (H2O)
Oxygen is joined to hydrogen = New Bond formation
Hence,
<u>Chemical reactions do involve changes in the chemical bonds that join
</u>
<u>atoms in compounds</u>
<u />
<u>Answer:</u> The amount of energy absorbed by water is 5390 Calories
<u>Explanation:</u>
To calculate the amount of heat absorbed at normal boiling point, we use the equation:
![q=m\times L_{vap}](https://tex.z-dn.net/?f=q%3Dm%5Ctimes%20L_%7Bvap%7D)
where,
q = amount of heat absorbed = ?
m = mass of water = 10 grams
= latent heat of vaporization = 539 Cal/g
Putting values in above equation, we get:
![q=10g\times 539Cal/g=5390Cal](https://tex.z-dn.net/?f=q%3D10g%5Ctimes%20539Cal%2Fg%3D5390Cal)
Hence, the amount of energy absorbed by water is 5390 Calories
Answer is: concentration of hydrogenium ions is 9,54·10⁻⁵ M.
c(HNO₂) = 0,075 M.
c(NaNO₂) = 0,035 M.
Ka(HNO₂) = 4,5·10⁻⁵.
This is buffer solution, so use <span>Henderson–Hasselbalch equation:
pH = pKa + log(c(</span>NaNO₂) ÷ c(HNO₂)).
pH = -log(4,5·10⁻⁵) + log(0,035 M ÷ 0,075 M).
pH = 4,35 - 0,33.
pH = 4,02.
<span>[H</span>₃O⁺] = 10∧(-4,02).
<span>[H</span>₃O⁺] = 0,0000954 M = 9,54·10⁻⁵ M.
The correct answer from the choices given is the third option. Covalent compounds have low boiling points. Also, their melting points are low. Covalent bonds have relatively low attractions which results to these properties. The bonds are easily broken by taking energy or adding energy.