Answer:
Exothermic Reaction
Explanation:
Its a combustion reaction and they are always exothermic in nature.
Answer:
Limiting reactant: O2
grams NO2 produced = 230.276 g NO2
grams of NO unused = 26.67 gNO
Explanation:
2NO + O2 --> 2NO2
Step 1: Determine the molar ratio NO:O2
molar ratio NO:O2 = 5.895: 2.503 = 2.35
stoichiometric molar ratio NO:O2 = 2:1
So, O2 is the limiting reactant.
Step2: Determine the grams of NO2:
?g NO2 = moles O2 x (2moles NO2/1 mol O2) x (MM NO2/ 1 mol NO2) = 2.503 x 2 x 46 = 230.276 g NO2
Step 3: Determine the amount of excess reagent unreacted
moles excess NO reacted = moles O2 x (2 moles NO/1 mol O2) = 2.503 x 2 = 5.006 moles NO reacted
moles NO unreacted = total moles NO - moles NO reacted = 5.895-5.006 =0.889 moles NO unreacted
mass NO unreacted = moles NO unreacted x MM NO = 0.889 x 30 =26.67 g NO unreacted
Concentration "molarity" of H₂SO₄ in this solution:
5 × 10⁻³ mol / dm³.
<h3>Explanation</h3>
What's the concentration of H⁺ ions in this solution?
,
where
is in the unit mol / dm³.

.
What's the concentration "molarity" of H₂SO₄ in this solution?
Sulfuric acid H₂SO₄ is a strong acid. Note the subscript "2". Each mole of this acid dissolves in water to produce two moles of H⁺ ions. It takes only
of H₂SO₄ to produce twice as much H⁺ ions.
As a result, the <em>molarity</em> of H₂SO₄ is 5 × 10⁻³ mol / dm³ or 0.005 M.
This is a biology question. Cyanobacteria partake in photsynthesis, meaning they take in carbon dioxide and water to produce glucose and oxygen.
The ground state electron configuration of ground state gaseous neutral tin is 4d to the power of 10. 5s to the power of 2. And 5p to the power of 2. And the term symbol is 3P0