1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zigmanuir [339]
3 years ago
9

For every 15 situps Ryan does, he does 10 push-ups. Create a table of equivalent ratios that show the relationship between the n

umber of sit-ups and the number of push-ups Ryan does.​

Mathematics
1 answer:
goblinko [34]3 years ago
8 0

Answer:

15/10, 30/20, 60/40, 120/80, 240/160, 480/320

Step-by-step explanation:

The number of push-ups is 2/3 the amount of sit-ups, so the ratio of sit-ups to push-ups is 3:2.

The easy way to do this is to double both 15 and 10 so your answer will stay an equivalent ratio. You will always have a 3:2 ratio this way.

You might be interested in
Answer 1a please and thank you
arlik [135]

Answer:h

Step-by-step explanation:

j

3 0
2 years ago
Standardized​ exam's scores are normally distributed. In a recent​ year, the mean test score was 21.2 and the standard deviation
alina1380 [7]
32’s 21 savages lil raw jhit only
8 0
3 years ago
y′′ −y = 0, x0 = 0 Seek power series solutions of the given differential equation about the given point x 0; find the recurrence
sukhopar [10]

Let

\displaystyle y(x) = \sum_{n=0}^\infty a_nx^n = a_0 + a_1x + a_2x^2 + \cdots

Differentiating twice gives

\displaystyle y'(x) = \sum_{n=1}^\infty na_nx^{n-1} = \sum_{n=0}^\infty (n+1) a_{n+1} x^n = a_1 + 2a_2x + 3a_3x^2 + \cdots

\displaystyle y''(x) = \sum_{n=2}^\infty n (n-1) a_nx^{n-2} = \sum_{n=0}^\infty (n+2) (n+1) a_{n+2} x^n

When x = 0, we observe that y(0) = a₀ and y'(0) = a₁ can act as initial conditions.

Substitute these into the given differential equation:

\displaystyle \sum_{n=0}^\infty (n+2)(n+1) a_{n+2} x^n - \sum_{n=0}^\infty a_nx^n = 0

\displaystyle \sum_{n=0}^\infty \bigg((n+2)(n+1) a_{n+2} - a_n\bigg) x^n = 0

Then the coefficients in the power series solution are governed by the recurrence relation,

\begin{cases}a_0 = y(0) \\ a_1 = y'(0) \\\\ a_{n+2} = \dfrac{a_n}{(n+2)(n+1)} & \text{for }n\ge0\end{cases}

Since the n-th coefficient depends on the (n - 2)-th coefficient, we split n into two cases.

• If n is even, then n = 2k for some integer k ≥ 0. Then

k=0 \implies n=0 \implies a_0 = a_0

k=1 \implies n=2 \implies a_2 = \dfrac{a_0}{2\cdot1}

k=2 \implies n=4 \implies a_4 = \dfrac{a_2}{4\cdot3} = \dfrac{a_0}{4\cdot3\cdot2\cdot1}

k=3 \implies n=6 \implies a_6 = \dfrac{a_4}{6\cdot5} = \dfrac{a_0}{6\cdot5\cdot4\cdot3\cdot2\cdot1}

It should be easy enough to see that

a_{n=2k} = \dfrac{a_0}{(2k)!}

• If n is odd, then n = 2k + 1 for some k ≥ 0. Then

k = 0 \implies n=1 \implies a_1 = a_1

k = 1 \implies n=3 \implies a_3 = \dfrac{a_1}{3\cdot2}

k = 2 \implies n=5 \implies a_5 = \dfrac{a_3}{5\cdot4} = \dfrac{a_1}{5\cdot4\cdot3\cdot2}

k=3 \implies n=7 \implies a_7=\dfrac{a_5}{7\cdot6} = \dfrac{a_1}{7\cdot6\cdot5\cdot4\cdot3\cdot2}

so that

a_{n=2k+1} = \dfrac{a_1}{(2k+1)!}

So, the overall series solution is

\displaystyle y(x) = \sum_{n=0}^\infty a_nx^n = \sum_{k=0}^\infty \left(a_{2k}x^{2k} + a_{2k+1}x^{2k+1}\right)

\boxed{\displaystyle y(x) = a_0 \sum_{k=0}^\infty \frac{x^{2k}}{(2k)!} + a_1 \sum_{k=0}^\infty \frac{x^{2k+1}}{(2k+1)!}}

4 0
2 years ago
"A study conducted at a certain college shows that 56% of the school's graduates find a job in their chosen field within a year
KiRa [710]

Answer:

99.27% probability that among 6 randomly selected graduates, at least one finds a job in his or her chosen field within a year of graduating.

Step-by-step explanation:

For each student, there are only two possible outcomes. Either they find a job in their chosen field within one year of graduating, or they do not. The probability of a student finding a job in their chosen field within one year of graduating is independent of other students. So we use the binomial probability distribution to solve this question.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

In which C_{n,x} is the number of different combinations of x objects from a set of n elements, given by the following formula.

C_{n,x} = \frac{n!}{x!(n-x)!}

And p is the probability of X happening.

56% of the school's graduates find a job in their chosen field within a year after graduation.

This means that p = 0.56

Find the probability that among 6 randomly selected graduates, at least one finds a job in his or her chosen field within a year of graduating.

This is P(X \geq 1) when n = 6.

Either none find a job, or at least one does. The sum of the probabilities of these events is decimal 1. So

P(X = 0) + P(X \geq 1) = 1

P(X \geq 1) = 1 - P(X = 0)

In which

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

P(X = 0) = C_{6,0}.(0.56)^{0}.(0.44)^{6} = 0.0073

P(X \geq 1) = 1 - P(X = 0) = 1 - 0.0073 = 0.9927

99.27% probability that among 6 randomly selected graduates, at least one finds a job in his or her chosen field within a year of graduating.

8 0
3 years ago
Enter the exponents for the variables of the GCF of the following monomials.
miskamm [114]
The smallest exponents of the x and y term are 2. The Greatest Common Factor ( G C F ) for 9 x² y² and 5 x² y³ is:  x² y².
8 0
3 years ago
Read 2 more answers
Other questions:
  • Solve for w. 8w -4w = -16 w =
    12·1 answer
  • Factor the expression.<br><br> 15n−18
    15·2 answers
  • Karl needs to build a stage that has an area of 72 square feet.The length of the stage should be longer than the width.what are
    15·1 answer
  • Help asap 1 question 98 points!!!!
    15·2 answers
  • How do you turn 1/2 to a decimal
    5·2 answers
  • Please explain the misleading
    15·1 answer
  • PLEASE HELP QUICK!!
    8·1 answer
  • Help pls ............
    9·1 answer
  • The first term of an arithmetic progression is 80 and the common difference is -3. what is the greatest possible sum of the firs
    8·1 answer
  • 9. The area of a circle is 706.97 in2. Find the radius.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!