The correct answer as to which observation most likely indicates that only a chemical change has taken place would that the change cannot be reversed.
When it comes to changes in a system, it can either be:
- physical change
- chemical change
When a substance undergoes a physical change, the original version of the substance can be recovered. In other words, physical changes can be reversible.
When a substance undergoes a chemical change, the original version cannot be recovered because an entirely new product would have been formed. In other words, chemical changes are irreversible.
Thus, once a change becomes irreversible, such a change is said to be a chemical change.
More on chemical change can be found here: brainly.com/question/1161517
Answer:what are the options????
Explanation:
Answer:
not quite sure what you meant by the question but I think the answer you're looking for is biomass? not sure though
The reaction is:
2 NO₂ (g) + F₂ (g) ⇆ 2 NO₂F (g)
The stoichiometric coefficients of the substances balance out each other to obey the Law of Definite Proportions. Now, you have to note that determining the reaction rate expression is specific to a certain type of reaction. So, this are determined empirically through doing experiments. But in chemical reaction engineering, to make things simple, you assume that the reaction is elementary. This means that the order of a reaction with respect to a certain substance follows their individual stoichiometric coefficients. What I'm saying is, the stoichiometric coefficients are the basis of our reaction rate orders. For this reaction, the rate order is 2 for NO₂, 1 for F₂ and 2 for NO₂F. When the forward and reverse reactions are in equilibrium, then it applies that:
Reaction rate of disappearance of reactants = Reaction rate of formation of products.
Therefore, we can have two reaction rate constants for this. But since the conditions manipulated are the reactant side, let's find the expression for reaction rate of disappearance of reactants.
-r = k[NO₂]²[F₂]
The negative sign before r signifies the rate of disappearance. If it were in terms of the product, that would have been positive. The term k denotes for the reaction rate constant. That is also empirical. As you can notice the stoichiometric coefficients are exponents of the concentrations of the reactants. Let's say initially, there are 1 M of NO₂ and 1 M of F₂. Then,
-r = k(1)²(1)
-r = k
Now, if we change 1 M of NO₂ by increasing it to its half, it would now be 1.5 M NO₂. Then, if we quadruple the concentration of F₂, that would be 4 M F₂. Substituting the values:
-r = k(1.5)²(4)
-r = 9k
So, as you can see the reaction rate increase by a factor of 9.
Answer:
Atoms form chemical bonds to make their outer electron shells more stable. An ionic bond, where one atom essentially donates an electron to another, forms when one atom becomes stable by losing its outer electrons and the other atoms become stable (usually by filling its valence shell) by gaining the electrons.