Explanation:
The given data is as follows.
Current (I) = 3.50 amp, Mass deposited = 100.0 g
Molar mass of Cr = 52 g
It is known that 1 faraday of electricity will deposit 1 mole of chromium. As 1 faraday means 96500 C and 1 mole of Cr means 52 g.
Therefore, 100 g of Cr will be deposited by "z" grams of electricity.

z = 
= 185576.9 C
As we know that, Q = I × t
Hence, putting the given values into the above equation as follows.
Q = I × t
185576.9 C =
t = 53021.9 sec
Thus, we can conclude that 100 g of Cr will be deposited in 53021.9 sec.
Answer:

Explanation:
Hello.
In this case, since the acid is monoprotic and the KOH has one hydroxyl ion only, we can see that at the equivalence point the moles of both of them are the same:

Thus, since we are given 1.70 g of the acid, we compute the moles of acid that were titrated:

Which equal the moles of KOH. In such a way, since the molarity is defined as moles over liters (M=n/V), the liters are moles over molarity (V=n/M), thus, the resulting volume is:

Best regards!
What is the exoeruent. Searched it up on google and only came up with two search results. None related to chemistry
Answer:
The volume of air at where the pressure and temperature are 52 kPa, -5.0 ºC is
.
Explanation:
The combined gas equation is,

where,
= initial pressure of gas = 104 kPa
= final pressure of gas = 52 kPa
= initial volume of gas = 
= final volume of gas = ?
= initial temperature of gas = 
= final temperature of gas = 
Now put all the given values in the above equation, we get:


The volume of air at where the pressure and temperature are 52 kPa, -5.0 ºC is
.
Answer:
The answer is "3.57 and 0.07".
Explanation:
Using the slop formula:

Given:
length path
from calibration it is found that
