Answer:
The population of the town in the year 1962 will be 1730.
Step-by-step explanation:
The population of Smallville can be found by the equation
, where P(t) is the population at time t, r represents the rate of growth, and I is the initial population.
Now, if there are 225 residents in 1950 and the population of the town grows at a rate of 17% per year, then the population of the town in the year 1962 will be
(Approximate)
Answer:
87.72%
Step-by-step explanation:
Data provided in the question:
Design capacity of the system = 1900 students per semester
Effective capacity = 90% of design capacity
Actual number of students = 1500
Now,
Efficiency = [ [ Actual capacity ] ÷ [ Effective capacity ] ] × 100%
also,
Effective capacity = 90% of 1900
= 0.90 × 1900
= 1710
Efficiency = [ 1500 ÷ 1710 ] × 100%
= 0.8772 × 100%
= 87.72%
Answer:
b/(b+a)
Step-by-step explanation:
(1/a)-(1/b) :[ (b²-a²)/ab²]
first solve :
common denominator ab
(1/a)-(1/b) = (b-a)/ab
[b-a/ab] : [(b²-a²)/ab²]
when divide fraction ( division sign turn to (×) and flip the second fraction(reciprocal):
[b-a/ab] × [ab²/ (b²-a²)]
then simplify : ab²/ab = b
(b-a)×(b/b²-a²)
factorize : b²-a² = (b-a)(b+a)
(b-a)×(b/(b-a)(b+a)) simplify : (b-a)/b-a = 1
[(b-a)(b)]/[(b-a)(b+a)
b/b+a
Answer:
3.9 but in fraction form it would be 3 9/10