1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ira [324]
3 years ago
9

If it exists, solve for the inverse function of each of the following:

Mathematics
1 answer:
nata0808 [166]3 years ago
8 0

Answer:

<em>The solution is too long. So, I included them in the explanation</em>

Step-by-step explanation:

This question has missing details. However, I've corrected each question before solving them

Required: Determine the inverse

1:

f(x) = 25x - 18

Replace f(x) with y

y = 25x - 18

Swap y & x

x = 25y - 18

x + 18 = 25y - 18 + 18

x + 18 = 25y

Divide through by 25

\frac{x + 18}{25} = y

y = \frac{x + 18}{25}

Replace y with f'(x)

f'(x) = \frac{x + 18}{25}

2. g(x) = \frac{12x - 1}{7}

Replace g(x) with y

y = \frac{12x - 1}{7}

Swap y & x

x = \frac{12y - 1}{7}

7x = 12y - 1

Add 1 to both sides

7x +1 = 12y - 1 + 1

7x +1 = 12y

Make y the subject

y = \frac{7x + 1}{12}

g'(x) = \frac{7x + 1}{12}

3: h(x) = -\frac{9x}{4} - \frac{1}{3}

Replace h(x) with y

y = -\frac{9x}{4} - \frac{1}{3}

Swap y & x

x = -\frac{9y}{4} - \frac{1}{3}

Add \frac{1}{3} to both sides

x + \frac{1}{3}= -\frac{9y}{4} - \frac{1}{3} + \frac{1}{3}

x + \frac{1}{3}= -\frac{9y}{4}

Multiply through by -4

-4(x + \frac{1}{3})= -4(-\frac{9y}{4})

-4x - \frac{4}{3}= 9y

Divide through by 9

(-4x - \frac{4}{3})/9= y

-4x * \frac{1}{9} - \frac{4}{3} * \frac{1}{9} = y

\frac{-4x}{9} - \frac{4}{27}= y

y = \frac{-4x}{9} - \frac{4}{27}

h'(x) = \frac{-4x}{9} - \frac{4}{27}

4:

f(x) = x^9

Replace f(x) with y

y = x^9

Swap y with x

x = y^9

Take 9th root

x^{\frac{1}{9}} = y

y = x^{\frac{1}{9}}

Replace y with f'(x)

f'(x) = x^{\frac{1}{9}}

5:

f(a) = a^3 + 8

Replace f(a) with y

y = a^3 + 8

Swap a with y

a = y^3 + 8

Subtract 8

a - 8 = y^3 + 8 - 8

a - 8 = y^3

Take cube root

\sqrt[3]{a-8} = y

y = \sqrt[3]{a-8}

Replace y with f'(a)

f'(a) = \sqrt[3]{a-8}

6:

g(a) = a^2 + 8a- 7

Replace g(a) with y

y = a^2 + 8a - 7

Swap positions of y and a

a = y^2 + 8y - 7

y^2 + 8y - 7 - a = 0

Solve using quadratic formula:

y = \frac{-b\±\sqrt{b^2 - 4ac}}{2a}

a = 1 ; b = 8; c = -7 - a

y = \frac{-b\±\sqrt{b^2 - 4ac}}{2a} becomes

y = \frac{-8 \±\sqrt{8^2 - 4 * 1 * (-7-a)}}{2 * 1}

y = \frac{-8 \±\sqrt{64 + 28 + 4a}}{2 * 1}

y = \frac{-8 \±\sqrt{92 + 4a}}{2 * 1}

y = \frac{-8 \±\sqrt{92 + 4a}}{2 }

Factorize

y = \frac{-8 \±\sqrt{4(23 + a)}}{2 }

y = \frac{-8 \±2\sqrt{(23 + a)}}{2 }

y = -4 \±\sqrt{(23 + a)}

g'(a) = -4 \±\sqrt{(23 + a)}

7:

f(b) = (b + 6)(b - 2)

Replace f(b) with y

y  = (b + 6)(b - 2)

Swap y and b

b  = (y + 6)(y - 2)

Open Brackets

b  = y^2 + 6y - 2y - 12

b  = y^2 + 4y - 12

y^2 + 4y - 12 - b = 0

Solve using quadratic formula:

y = \frac{-b\±\sqrt{b^2 - 4ac}}{2a}

a = 1 ; b = 4; c = -12 - b

y = \frac{-b\±\sqrt{b^2 - 4ac}}{2a} becomes

y = \frac{-4\±\sqrt{4^2 - 4 * 1 * (-12-b)}}{2*1}

y = \frac{-4\±\sqrt{4^2 - 4 *(-12-b)}}{2}

Factorize:

y = \frac{-4\±\sqrt{4(4 - (-12-b))}}{2}

y = \frac{-4\±2\sqrt{(4 - (-12-b))}}{2}

y = \frac{-4\±2\sqrt{(4 +12+b)}}{2}

y = \frac{-4\±2\sqrt{16+b}}{2}

y = -2\±\sqrt{16+b}

Replace y with f'(b)

f'(b) = -2\±\sqrt{16+b}

8:

h(x) = \frac{2x+17}{3x+1}

Replace h(x) with y

y  = \frac{2x+17}{3x+1}

Swap x and y

x  = \frac{2y+17}{3y+1}

Cross Multiply

(3y + 1)x = 2y + 17

3yx + x = 2y + 17

Subtract x from both sides:

3yx + x -x= 2y + 17-x

3yx = 2y + 17-x

Subtract 2y from both sides

3yx-2y  =17-x

Factorize:

y(3x-2)  =17-x

Make y the subject

y = \frac{17 - x}{3x - 2}

Replace y with h'(x)

h'(x) = \frac{17 - x}{3x - 2}

9:

h(c) = \sqrt{2c + 2}

Replace h(c) with y

y = \sqrt{2c + 2}

Swap positions of y and c

c = \sqrt{2y + 2}

Square both sides

c^2 = 2y + 2

Subtract 2 from both sides

c^2 - 2= 2y

Make y the subject

y = \frac{c^2 - 2}{2}

h'(c) = \frac{c^2 - 2}{2}

10:

f(x) = \frac{x + 10}{9x - 1}

Replace f(x) with y

y = \frac{x + 10}{9x - 1}

Swap positions of x and y

x = \frac{y + 10}{9y - 1}

Cross Multiply

x(9y - 1) = y + 10

9xy - x = y + 10

Subtract y from both sides

9xy - y - x = y - y+ 10

9xy - y - x =  10

Add x to both sides

9xy - y - x + x=  10 + x

9xy - y =  10 + x

Factorize

y(9x - 1) =  10 + x

Make y the subject

y = \frac{10 + x}{9x - 1}

Replace y with f'(x)

f'(x) = \frac{10 + x}{9x -1}

You might be interested in
What is the distance between points A and B? (Use only digits 0-9 to write the distance.)
qwelly [4]

Answer:

8

Step-by-step explanation:

A is on the negative side so you count the distanse as -6 -5 -4 so on and then you get to 0 and then its 12345678

3 0
3 years ago
A statue casts a shadow 30 feet long. At the same time, a person who is 5 feet tall casts a shadow that is 6 feet long. How tall
zmey [24]
Use proportions.

5/6 = x/30

6 * 5 = 30
5 * 5 = 25

x = 25

The statue is 25 feet tall.
3 0
3 years ago
PLEASE HELP I NEED THIS IS DUE IN AN HOUR!!! 40 POINTS!!!Sherelle and Venita’s grandmother said that one of the bags has a coin
nikdorinn [45]

Answer:

I dont know about Sherelle, but Venita's grandmother can give a reason that as she is from older age, most probably, the coin can be in her bag...... And the coin, according to me will be in grandmother's bag....

Hope it helps!!!

7 0
2 years ago
savannah bought two 24 packs of tim bits. she is hanging out with 4 friends. what is the greatest number of timbits each of them
lilavasa [31]
6.It is a rational quotient. You know because 24 tim bits divided by four friends equals six.
5 0
3 years ago
Is (5.7) a solution for the following system of equations?<br> y=2x-3<br> yr+2
Len [333]

Answer:

There are no solution to those equations

Step-by-step explanation:

6 0
3 years ago
Other questions:
  • Please help! I really need help!
    5·2 answers
  • Write two different expressions, each with more than one operation, that have a value of 20
    10·1 answer
  • Linda purchase a prepaid phone card for $30. Long distance calls cost $.17 a minute using this card when do use her card. Linda
    5·1 answer
  • A teacher chooses four students of a class of 36 to
    10·1 answer
  • Someone please help me with this
    8·1 answer
  • An new bakery must sell at least $250 worth of cookies and
    11·1 answer
  • Who is square<br> root 3​
    10·2 answers
  • 71 points what is 12x 8=...........................96
    11·1 answer
  • Find the following measure for this figure.
    9·1 answer
  • A person jogged 10 times along the perimeter of a rectangular field at the rate of 12 kilometers per hour for 30 minutes. If fie
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!