The answer is C I think try putting that one ok I tried to help so yeah um have a great day
The <em>twelfth</em> element of the <em>geometric</em> sequence is equal to 4,096. (Correct choice: D)
<h3>How to find a determined element of a geometric sequence by exponential formulae</h3>
Sequences are series of elements generated according to at least one condition, usually equations. <em>geometric</em> sequences are generated according to a <em>exponential</em> formulas, whose form and characteristics are described below:
f(n) = a · bⁿ ⁻ ¹ (1)
Where:
- a - First element of geometric sequence
- b - Common ratio of the geometric sequence
- n - Element index within the geometric sequence
If we know that a = 4, b = 2 and n = 12, then the twelfth element of the geometric sequence from the statement is:
f(12) = 4 · 2¹² ⁻ ¹
f(12) = 4 · 2¹¹
f(12) = 4 · 2,048
f(12) = 4,096
The <em>twelfth</em> element of the <em>geometric</em> sequence is equal to 4,096. (Correct choice: D)
To learn more on geometric sequences: brainly.com/question/4617980
#SPJ1
You have to solve for y
Subtract 2x to the other side
Divide both sides by 4
y=-1x/2-2
Graph D has a slope of -1/2 and a y-intercept of -2
No, because (2,0) is a coordinate. x=2 and y=0. So just plug in the numbers where there's x or y with the appropriate number, (2 or 0). So in the first equation, x-2y=0, when you pug in the numbers, 2-2(0)=0, you know it's wrong because 2-0=0 isn't correct. So no. the point (2,0) is not a solution to the first equation. Now plug in the numbers for the second coordinate. You get 2(2)-3(0)=1. So 4-0=1. This is once again false no no. (2,0) satisfies neither equations.
The answer to the question